
Angelika Langer & Klaus Kreft
http://www.AngelikaLanger.com/

Java 8

Stream
Puzzlers



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (2)

what we will do in this talk

• look at some surprising / not so surprising behavior 

• show some Java 8 stream source code
• have a vote about its behavior / output
• let the code run
• discuss the reasons / background



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (4)

speakers' relationship to topic

• independent trainer / consultant / author
– teaching C++ and Java for ~20 years
– curriculum of some challenging seminars
– providing consulting services for ~20 years
– JCP observer and Java champion since 2005
– authors of "Effective Java" column
– author of Java Generics FAQ and Lambda Tutorial & Reference



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (5)

let's get started ...

puzzler #1
parallel forEach()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (9)

puzzler #1 – explained

• parallel !!!

• javadoc (forEach()):
The behavior of this operation is explicitly nondeterministic. For 
parallel stream pipelines, this operation does not guarantee to 
respect the encounter order of the stream, as doing so would 
sacrifice the benefit of parallelism. For any given element, the
action may be performed at whatever time and in whatever thread 
the library chooses. If the action accesses shared state, it is 
responsible for providing the required synchronization. 



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (10)

parallel forEach()

T

fork phase execution join phase

forEach(s -> System.out.print(s))

T2

T1

T22

T21

T12

T11

T2

T1

T
forEach(...)

forEach(...)

forEach(...)

forEach(...)



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (11)

let's use another stream operation ... 

puzzler #2
parallel reduce()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (15)

puzzler #2 – explained

• javadoc (reduce()):

T reduce(T identity, BinaryOperator<T> accumulator)

Performs a reduction on the elements of this stream, using the 
provided identity value and an associative accumulation function, 
and returns the reduced value. This is equivalent to:

T result = identity;
for (T element : this stream)

result = accumulator.apply(result, element)
return result;

but is not constrained to execute sequentially.



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (16)

puzzler #2 – explained (cont.)

• javadoc also says:

The identity value must be an identity for the accumulator
function. This means that for all t, 
accumulator.apply(identity, t) is equal to t. 

The accumulator function must be an associative function.

• these requirements are important
– ensure: order preserving when executed in parallel



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (17)

puzzler #2 – identity

• The identity value must be an identity for the 
accumulator function. This means that for all t, 
accumulator.apply(identity, t) is equal to t.

• our example

reduce("", (s1, s2) -> s1 + s2)

because:  ("" + s).equals(s)

for all  String s



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (18)

puzzler #2 – associative

• The accumulator function must be an associative function.

• commutative:  op(a,b) = op(b,a)   or   a○b = b○a
– example: max for int, “+” for int

– associative: op(op(a,b),c) = op(a,op(b,c)) or
((a○b)○c)   =   (a○(b○c))

 example: “+” for String (string concatenation)
– "hello"+"world" differs from "world"+"hello"

– (("one"+"two")+"three") same as ("one"+("two"+"three"))

– example: “-” for int
3-1 differs from 1-3

((3-2)-1) differs from (3-(2-1))

no
t c

om
m

ut
at

iv
e

no
t a

ss
oc

ia
tiv

e



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (19)

puzzler #2 - requirements ignored

• what if we violate the requirements ... ?
– use non-identity
– use non-associative accumulator



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (20)

let's ignore identity ...

puzzler #2a
parallel reduce() - with non-identity 



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (24)

parallel reduce()

T

fork phase execution join phase

T2

T1

T22

T21

T12

T11

T2

T1

T
"->" + ...

"->" + ...

"->" + ...

"->" + ...

reduce("->", (s1, s2) -> s1 + s2)



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (25)

puzzler #2 – violate associativity

• use as reduction operation

– where toggle() turns 
 the upper case characters from s1 to lower case, and 
 the lower case characters form s1 to upper case

reduce("", (s1, s2) -> toggle(s1) + s2)

String toggle(String in) {
char[] chars = in.toCharArray();
char[] buf = new char[chars.length];
for (int i=0;i<chars.length;i++) {
if (Character.isLowerCase(chars[i])) 
buf[i] = Character.toUpperCase(chars[i]);

if (Character.isUpperCase(chars[i])) 
buf[i] = Character.toLowerCase(chars[i]);

}
return new String(buf);

}



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (26)

puzzler #2 – violate associativity (cont.)

• use as reduction operation

– toggle() is not associative
 (a○b)○c -> Ab○c -> aBc
 a○(b○c) -> a○Bc -> ABc

reduce("", (s1, s2) -> toggle(s1) + s2)



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (27)

let's ignore associativity ...

puzzler #2b
parallel reduce() - non-associative accumulator



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (29)

parallel reduce()

T

fork phase execution join phase

T2

T1

T22

T21

T12

T11

T2

T1

T

toggle(t21) + t22

reduce("", (s1, s2) -> toggle(s1) + s2)

toggle(t11) + t12

toggle(t1) + t2



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (30)

parallel reduce()

• sequential reduce()
(((((((a○b)○c)○d)○e)○f)○g)○h) => AbCdEfGh

• parallel reduce() with split in halves
((a○b)○c)○d) ○ ((e○f)○g)○h) => aBcDEfGh

• parallel reduce() with split in quarters
((a○b) ○ (c○d)) ○ ((e○f) ○ (g○h)) => AbcDeFGh



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (31)

puzzler #2a/b – hint

• violating the accumulator requirements cause 
the results produced by parallel streams to be wrong

• but also not okay for sequential streams
• extremely fragile code

– adding parallel() leads to wrong results
– can easily happen when the responsibility for code is shared

 typical for an agile process



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (32)

other stream sources

• streams can be generated

• stream operation generate()

… each element is generated by the provided Supplier .

static <T> Stream<T> generate(Supplier<T> s)



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (33)

let's use a generated stream ...

puzzler #3
generate()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (37)

puzzler #3 – explained

• javadoc (generate()):
Returns an infinite sequential unordered stream where 
each element is generated by the provided Supplier. 
This is suitable for generating constant streams, 
streams of random elements, etc.

• we have used generate() incorrectly

• as before: fails when executed in parallel
– but sequential code is fragile and also not recommended



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (38)

splitting unordered infinite streams

• unordered infinite streams have a special spliterator 
– of type StreamSpliterators.UnorderedSliceSpliterator

• creates stream slices
– each slice is filled with generated elements
– concurrently by several threads

• each task
– iterates over a slice
– applies intermediate/terminal operation



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (39)

splitting infinite streams

...

slices are filled concurrently => unordered

generate(...).parallel().map(...).reduce(...)

1 2 3 4 5 6 7 8

1 2 4 6 3 5 7 8 910 11

map

reduce

slices are processed in parallel 
i.e., sequentially per slice, 

but multiple slices in parallel

35789...



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (40)

another stream generator

• stream operation iterate()

… iterative application of a function f to an initial element 
seed, producing a Stream consisting of seed, f(seed), 
f(f(seed)), etc.

static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (41)

let's use another stream generator ...

puzzler #4
iterate()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (45)

puzzler #4 – explained

• javadoc (iterate()):
Returns an infinite sequential ordered Stream 
produced by iterative application of a function f to an 
initial element seed, producing a Stream consisting of 
seed, f(seed), f(f(seed)), etc.

The first element (position 0) in the Stream will be the 
provided seed. For n > 0, the element at position n, 
will be the result of applying the function f to the 
element at position n - 1.

• this time we have done it correctly



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (46)

splitting ordered infinite streams

• ordered infinite streams use a spliterator 
– of type Spliterators.IteratorSpliterator

• creates batches
– each batch is filled with generated elements
– sequentially by one thread

not necessarily always the same thread
– next batch might be filled sequentially by another thread

• each task
– iterates over a segment of a batch
– applies intermediate/terminal operation



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (47)

splitting infinite streams

...

batches are filled sequentially => ordered

iterate(...).parallel().map(...).reduce(...)

1 2 3 4 5 6 7 8

1 2 3 4 5 6

map

reduce

batches are split and processed in parallel 
i.e., sequentially per segment, 

but multiple segments in parallel

........



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (48)

order hint

• stream source and terminal operation must be ordered

then the result/effect is ordered

• figure that out from the javadoc, or (some simple rules):

– arrays and all collections (except HashSet) are ordered

– terminal operations
 reduce(), forEachOrdered() are ordered
 forEach() unordered
 collect() depends on how Characteristics

Collector.Characteristics.UNORDERED and
Collector.Characteristics.CONCURRENT

are set for the Collector



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (49)

intermediate operations and order ... 

puzzler #5
intermediate map()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (54)

order hint: intermediate operations

• intermediate operations have no effect on order

• except:
– the intermediate operation sorted() restores order



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (55)

let's put order into an unordered source ... 

puzzler #6
restoring order via sorted()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (59)

puzzler #6 – explained

• unfortunately the javadoc (of sorted()) is not of much 
help 

• there is only a small hint:
This is a stateful intermediate operation.



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (60)

puzzler #6 – explained (cont.)

• need to have a look at the implemention
– sorted() is implemented with two barriers, i.e.

 stream elements are collected before the actual sort (1st barrier), 
 then the sort is performed with the collected elements, and then
 the resulting elements are collected again after the sort (2nd barrier) ,

– before the next operations start

• first barrier leads (already) to OutOfMemoryError
– because it is an infinite stream that is generated()

.parallelStream().statelessOps().sorted().statelessOps().terminal();



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (61)

let's explore  parallel() / sequential() ... 

puzzler #7
parallel() and sequential()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (67)

puzzler #7 – explained

• unfortunately the javadoc of sequential() is not of 
much help 

• there is only a small hint:
May return itself, either because the stream was already 
sequential, or because the underlying stream state was 
modified to be sequential.

• that’s how its done in (all) stream implementations
– parallel() / sequential() flip a flag  (stream state)



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (68)

puzzler #7 – explained (cont.)

• and 
– intermediate operations are lazy

 not executed immediately

– terminal operations are eager
 trigger the execution of all previous intermediate operations, 

and the terminal operation



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (69)

pipeline

'a'   'b'   'c'   'd'   'e'   'f'

'A'   'B'   'C    'D'   'E'   'F'

code looks like
really executed

map

forEach

Arrays.stream(chars)
.map(s -> toggle(s))
.forEach(s -> System.out.print(s));

'A'   'B'   'C    'D'   'E'   'F'



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (70)

puzzler #7 – explained (cont.)

Arrays.stream(chars).parallel()
.map(s -> toggle(s))
.sequential()
.forEach(s -> System.out.print(s));

set parallel

set sequential

trigger all stream operations, with mode set to sequential



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (71)

difference between …

… stream operations and other methods 

• stream operation act upon 
the elements of the underlying stream source

– defined in Stream<T>, IntStream, LongStream, DoubleStream

• other operations
– stream maintenance / management

 e.g. parallel(), sequential()
– defined in BaseStream

 super-interface to Stream<T>, IntStream, LongStream, DoubleStream



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (72)

let's explore  forEachOrdered() ... 

puzzler #8
forEachOrdered()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (76)

puzzler08 – why is it so

• this time we have done it correctly

• javadoc (forEachOdered()):
This operation processes the elements one at a time, in encounter 
order if one exists. 

• what the javadoc does not say: 
often slower than forEach()



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (77)

forEachOrdered()

T

fork phase execution join phase

map(s->toggle(s)).forEachOrdered(s->System.out.println(s));

T2

T1

T22

T21

T12

T11

T2

T1

T

(map+forEachOrdered)T11

mapT12

mapT22

mapT21

forEachOrderedT12

forEachOrederedT2



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (78)

wrap-up

• preservation of encounter order requires:
– underlying stream source must be ordered, or
– intermediate operation sorted() creates order, 
and
– terminal operation must be ordered



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (79)

wrap-up

• ordered stream sources
– arrays, collections (exception HashSet), iterate(), ...

• unordered stream sources
– HashSet, generate(), ...

• ordered terminal operations
– reduce(), forEachOrdered(), collect(toCollection()), ...

• unordered terminal operations
– forEach(), collect(toConcurrentMap()), ...



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (80)

authors

Angelika LangerAngelika Langer

Klaus Klaus KreftKreft

www.AngelikaLanger.com



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (81)

stream puzzlers

Q & A



© Copyright 2003-2016 by Angelika Langer & Klaus Kreft.  All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/4/2017,18:28 stream puzzlers  (82)

source code

www.AngelikaLanger.com\Conferences\Code\jDays2017\Main.java


