
Angelika Langer
Trainer/Consultant

http://www.langer.camelot.de/

Standard C++
Locales

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (2)

Agenda

 Introduction to I18N
 I18N Support in the C++ Standard Libary
 Creating and Accessing Locales
 Using Facets
 Adding User-Defined Facets

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (3)

Cultural Differences

Alphabet
US: a-z A-Z & punctuation
German: as above & äöü ÄÖÜ ß
Greek: 

Language
English
Deutsch
Français

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (4)

Cultural Differences

Numbers
1,000,000.55
1.000.000,55

Date
Sunday, March 3, 1996
Sonntag, 3. März 1996

Time
4:55 pm
16:55 Uhr
03:45:15

Currency
USD 10.00
$ 24.99
¥ 155
13,50 DM

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (5)

Sorting Strings

Sorted by ASCII rules

Airplane
Zebra
bird
car

ähnlich

Sorted by German rules

Airplane
ähnlich

bird
car

Zebra

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (6)

Character Sets

 single-byte (7- or 8-bit)
– 7-bit ASCII
– 8-bit extensions of ASCII

• additional characters, accented vowels, special symbols
• Western European, Arabic, Greek, ...

 multi-byte codes
– mixture of one and two-byte characters

• Traditional Chinese, Kanji, ...

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (7)

JIS Encoding

 requires escape sequences to shift between one-
and two-byte modes.

In Japan <ESC>$B ...some Kanji... <ESC>(B is spelled ‘Tokyo’.

initial shift state :
ASCII
one-byte characters

shift to Kanji:
JIS X 0208-1983
two-byte characters

shift to ASCII:

one-byte characters

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (8)

Multi-Bytes vs. Wide Characters

 Multi-byte encodings
– contain characters of different width,
– are used on external media.

 Wide character sets
– All characters have same size.
– are used for in-memory representation.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (9)

Multi-Byte Wide Character Conversion

J a p na <ESC> B$

p na

external file

internal buffer

JIS

Unicode

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (10)

Agenda

 Introduction to I18N
 I18N Support in the C++ Standard Library
 Creating and Accessing Locales
 Using Facets
 Adding User-Defined Facets

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (11)

Using C++ Locales

English “C” localecin
4 7 . 1 1

cout
4 7 , 1 1

German locale

3 . 1 4 1

3 , 1 4 1

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (12)

Using C++ Locales

cin.imbue(locale::classic());

cout.imbue(locale(“German”));

double f;

while (cin >> f)

cout << f << endl;

Input: 47.11 3.141

Output: 47,11 3,141

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (13)

Culture-Sensitive String Comparison

 operator<() for basic_string<charT> is not
internationalized (performs lexicographical comparison of the
character codes).

 For ‘culture sensitive’ string comparison the locale provides
an overloaded function call operator operator()() :

template <class charT,class Traits,class Alloc>

bool operator()

(const basic_string<charT,Traits,Alloc>& s1,

const basic_string<charT,Traits,Alloc>& s2)

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (14)

Locales as Comparators

 Locale objects can be use as a comparator with standard
containers and algorithms.

locale German(“German”);

map<string,long,locale> phoneDir(German);

locale German(“German”);

vector<string> names;

sort(names.begin(),names.end(),German);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (15)

Facets and Locales

 Internationalization services bundled into so-called
facets.

 A facet
– encapsulates data that represents a set of culture and

language dependencies and/or
– offers a set of related internationalization services.

 A locale is a container of facets.
– Locales are objects of class type called locale and

facets are objects of a facet type derived from
locale::facet.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (16)

Facet Types

Facet types are either
 predefined in the standard library (standard facets) or
 user-defined.

Standard facets
 cover the basic set of cultural differences
 are automatically contained in every locale

User-defined facets
 cover further areas of cultural differences
 only present in a locale, if they were explicitly added

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (17)

The Standard Facets

num_get<charT,InputIterator>
num_put<charT, OutputIterator>
numpunct<charT>

numeric

monetary money_get<charT,InputIterator>
money_put<charT,InputIterator>
moneypunct<charT,bool International>

time time_get<charT,InputIterator>
time_put<charT,OutputIterator>

1.000,00
1,000.00

$ 100.00
100,00 DM

5:00 pm
17:00 h
31.01.95
01/31/95

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (18)

The Standard Facets

ctype

collate

code conversion

messages

ctype<charT>

collate<charT>

codecvt<fromT,toT,stateT>

messages<charT>

isspace()
tolower()

a,u,o,n,c

wide char
multibyte

open(cat)
get(msgid)

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (19)

Facets

template <class charT, class InputIterator>

class time_get : public locale::facet {

public:

iter_type get_time(iter_type s, iter_type end,

ios_base&, ios_base::iostate& err, tm*) const;

iter_type get_date(...) const;

iter_type get_weekday(...) const;

iter_type get_monthname(...) const;

iter_type get_year(...) const;

};

 Each facet offers a set of internationalization services.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (20)

Agenda

 Introduction to I18N
 I18N Support in the C++ Standard Library
 Creating and Accessing Locales
 Using Facets
 Adding User-Defined Facets

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (21)

Creating Locale Objects

A locale object is created either by:
– providing a locale name,
– combining two existing locales, or
– combing an existing locale with an existing facet.

 The default constructor creates a snapshot of the current
global locale.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (22)

Named Locales
Locale names

– same names as in the standard C library

"C": classic US English ASCII locale
– default; implicitly used if programs is not internationalized
– created saying locale("C") or calling static function
locale::classic()

–
"": native locale configured for a system

C locale names: syntax and semantics implementation-specific
– "De_DE" on X/Open same as
"German_Germany.1252" on Microsoft

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (23)

Combined Locales

 cannot add or replace facets in an existing locale object

 locale objects are immutable
– their content does not change during their lifetime
– None of the contained facets can be modified or replaced, nor can

facets be added or removed from a locale.

 non-standard locales can only be created as a copy of an
existing locale

– with one or several facets replaced or added

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (24)

Creating Combined Locales

template <class Facet>

locale combine(const locale& other);

– creates a copy of the locale object it is invoked on, and
the copy has the facet of type Facet replaced or added
by the corresponding facet from the existing locale
other

locale holland("Dutch");
dutch_german
= locale("German").combine< moneypunct<char> >(holland);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (25)

Retrieving Facets

 template <class Facet>

bool has_facet(const locale&) throw()

– allows to check whether a facet of the specified facet type is
contained in the specified locale

 template <class Facet>
const Facet& use_facet(const locale&)

– returns a reference to the contained facet, if present, and throws a
bad_cast exception otherwise

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (26)

Retrieving Facets

locale loc; // snapshot of the current global locale

if (has_facet< money_put<char> >(loc)
const money_put<char>& fac1
= use_facet< money_put<char> >(loc);

if (has_facet< money_put<char,string_inserter<char> > >(loc))
const money_put<char,string_inserter<char> >& fac2
= use_facet< money_put<char,string_inserter<char> > >(loc);

 When these functions are invoked, the template argument
(i.e. facet type) must be explicitly specified.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (27)

use_facet<Facet>()

use_facet<Facet>(loc)
 returns a reference to the requested facet, if found
 throws a bad_cast exception otherwise

How long does the reference stay valid?
 at least as long as any copy of the containing locale exists

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (28)

Architecture of C++ Locales

locale l2(l1)

locale l1(“de”)

imp

time_get<>

time_put<>

codecvt<>

get_time ()
get_date ()

...

put()
...

convert()
...

locale l3
(l2,locale(”fr”)
,LC_TIME) imp

vector<facet>

vector<facet> time_get<>

time_put<>

get_time ()
get_date ()

...

put()
...

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (29)

Temporary Locale Objects

Do NOT create any temporary locale objects.

 The validity of the facet reference is tied to the lifetime of
its containing locale and any copies of that locale, and

 might become invalid before its use, because the containing
locale has already been destroyed.

const numpunct<char>& fac
= use_facet<numpunct<char> >(locale("German"));

// program crash:
cout << "true in German: "

<< fac.truename() << endl;

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (30)

Agenda

 Introduction to I18N
 I18N Support in the C++ Standard Library
 Creating and Accessing Locales
 Using Facets
 Adding User-Defined Facets

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (31)

Facet Families

A facet family is a hierarchy of facet types that are derived from each
other.

 base class defines the family’s facet interface

Some facet families are closely related:
 base classes created from a facet base class template

Example:
 base class template of the ctype facet families

template <class charT> class ctype

 facet base classes (instantiations or specializations)
ctype<char> and ctype<wchar_t>

 family members (derived classes)
ctype_byname<char> and ctype_byname<wchar_t>

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (32)

Facet Families

locale::facet

numeric facets

ctype facets

time facets

num_put

charT:class,
InputIteratpr:class

num_get

charT:class.
OutputIterator: class

numpunct
charT:class

ctype
charT:class

codecvt

internT:class,
externT: class,
stateT: class

time_put

charT:class,
InputIterator: class

time_get

charT:class,
OutputIterator: class

numpunct_byname
charT:class

ctype_byname
charT:class

codecvt_byname

internT:class,
externT: class,
stateT: class

time_get_byname

charT:class,
OutputIterator: class

charT:class,
InputIterator: class

money_put

charT:class,
InputIterator:class

money_get

charT:class,
OutputIterator:
class

moneypunct

charT:class,
Intl: bool

monetary facets

collate
charT:class

collate facets

messages
charT:class

messages facets

moneypunct_byname

charT:class,
Intl: bool

collate_byname
charT:class

message_byname
charT:class

time_put_byname

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (33)

Locales and Facets

 Facets are rarely used stand-alone (i.e. independently of a
locale).

– Usually, all facets relevant for a certain cultural area are
bundled into a locale object.

 Each locale object contains at most one facet from a given
facet family.

 Facets in a locale can be identified by means of their family
name (base class type).

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (34)

Advanced Usage of Standard Facets

There are several ways of using facets, depending on how they
are maintained:

 Indirect Use of a Facet Through a Stream
 Use of a Facet Through a Locale
 Direct Use of the Facet Independently of a Locale

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (35)

Use of Facets Through Streams

 Each stream has a locale attached.
 Various stream operations use standard facets contained in

the stream's locale for performing their tasks.
– code conversion facets for converting between internal and

external character encodings
– ctype facets recognition of whitespace character, digits, etc. during

parsing
– numeric facets used by the inserters and extractors for numeric

values
 Inserters and extractors offer a convenient way of using the

facets' capabilities.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (36)

Internationalized Number Formatting

 Attach the desired locale to a string stream, write the
numeric value to the string stream, and afterwards extract
the resulting string from the string stream.

ostringstream ost;
ost.imbue(locale("German"));
ost << setprecision(2) << uppercase << scientific;
ost << 831.0 << ‘ ‘ << 8e2;

string s = ost.str();

"8,31E+02 8,00E+02"

 Afterwards the string s contains:

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (37)

Use of Facets Through Streams

Use of formatting and parsing facets through a stream is the
most convenient way of using these facets.

Internationalized parsing and formatting of
 numeric values is available through the stream classes via

the predefined inserters and extractors.
 date and time values is not available through the stream

classes.
– There are no standard types for representing date and time values.
– Such inserters and extractors can be added.

 other values can be handled in the exact same way.
– Define a facet type for address formatting rules, install such facets

in a locale, attach that locale to a stream, define an inserter for
address values uses the address formatting facet.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (38)

Use of Facets Through Locales

Write the result of formatting of a numeric value to a string
object of type string.

 use the num_put facet's put() function, which writes to an
character container via an output iterator

template<class charT,

class OutputIterator

= ostreambuf_iterator<charT> >

class num_put

– generates a formatted character sequence from a numeric or
Boolean value

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (39)

Use of Facets Through Locales

 must provide an iterator that allows output to the string
– prefer an insert iterator of type back_insert_iterator
<string> over a plain string iterator of type
string::iterator, in order to make sure that the string
grows as needed

 need a num_put facet of type num_put<char,
back_insert_iterator<string> >

– no locale contains such a facet
– we must explicitly install it in the locale object that we want to use

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (40)

The num_put Facet

OutputIterator

put(OutputIterator s, ios_base& fg,

char_type fl, double v)

parameters:
 an output iterator

 location to which the formatted string should be written
 a reference to an ios_base object

• to retrieve information contained in numpunct facet in the locale attached
to the ios_base object

• to retrieve format flags contained in the ios_base object

 a fill character
 used for padding

 the value to be formatted

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (41)

Internationalized Number Formatting

typedef num_put<char,back_insert_iterator<string> >
string_num_put;

locale loc(locale("German"), new string_num_put);

basic_ios<char> str(0);
str.imbue(loc);
str.precision(2);
str.setf(ios_base::uppercase|ios_base::scientific);

string s;
back_insert_iterator<string> iter(s);

const string_num_put& fac = use_facet<string_num_put>(loc);

iter = fac.put(iter,str,' ',831.0);
*iter++ = ‘ ‘;
iter = fac.put(iter,str,' ',8e2);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (42)

Use of Facets Through Locales

 significantly less convenient than use through streams

 worst-case example
– other facets are easier to use independently of streams
– examples:

• collation through locale’s function call operator
• character classification through global functions like
isspace(char,locale), etc.

 facets tightly coupled to streams:
– parsing and formatting facets for numeric, monetary, and time/date

values
– code conversion facets

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (43)

Use of Facets Without Locales

Facets are designed to be contained in locales.
 All facet types have a protected destructor.
 Objects of a type with an inaccessible destructor can only

be created on the heap, hoping that someone who has
access to the destructor will eventually delete the heap
object.

 That is exactly, what facets are designed for:
– we create them on the heap and
– hand them over to a locale, which is a friend of all facet types and

has access to the protected destructor, and
– the locale deletes the facets, once it will not be used any longer.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (44)

Do we have to stuff facets into locales?

It looks kind of stupid to stuff the facet into a locale first, and
then retrieve it again so that it can be used. Why did we do
it?

 The num_put facet needs other facets.
 Stuffing all of the facets into one locale object makes it

easy to pass around all the necessary information in form of
the locale object.

 Still, we can do it differently. A facet need not necessarily
be contained in a locale.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (45)

Stand-Alone Facets

If we want to use a facet independently of a locale, then we
need an additional abstraction that allows to create and
destroy facet objects.

We wrap the original facet in a derived class that has an
accessible destructor:

template <class Facet>
class StandAloneFacet
: public Facet

{
public:

StandAloneFacet() : Facet(1) {}

~StandAloneFacet() {}
};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (46)

The StandAloneFacet Wrapper

 simple wrapper around the actual facet
 derived from the facet type that it encapsulates
 provides the missing public destructor
 base class constructor called with the value 1 as an

argument
– indicates that the facet is used stand alone, i.e. the

memory is correctly managed by the base class

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (47)

Internationalized Number Formatting

 create a wrapper, provide an ios_base object with format flags and
attached locale, and call the facet’s put() function

typedef num_put<char,back_insert_iterator<string> >
string_num_put;

StandAloneFacet<string_num_put> fac;

basic_ios<char> str(0);
str.imbue(locale("German"));
str.precision(2);
str.setf(ios_base::uppercase|ios_base::scientific);

string s;
back_insert_iterator<string> iter(s);

iter = fac.put(iter,str,' ',831.0);
*iter++ = ‘ ‘;
iter = fac.put(iter,str,' ',8e2);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (48)

Agenda

 Introduction to I18N
 I18N Support in the C++ Standard Library
 Creating and Accessing Locales
 Using Facets
 Adding User-Defined Facets

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (49)

User-Define Facet Types

[1] Facet types must be subclasses of class
locale::facet.

[2] They must contain a facet identification in form of a
static data member that is declared as
static locale::id id;

– The identification is used for maintenance and retrieval
of facets from a locale and

– identifies an entire family of facets:
• All facets with same identification belong to same facet family.
• A locale cannot contain two facets with identical identification.
• Facets from the same family replace each other.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (50)

User-Defined Facet Types

New types of facets can be added
 by deriving from existing facet types, in which case the

facet identification is inherited and the new facet belongs to
an already existing facet family, or

 by defining a new facet class that has a facet identification
of its own, in which case a new facet family is introduced.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (51)

Adding to an Existing Facet Family

Character Classification for Umlaut
 The German alphabet includes so-called umlaut characters;

these are 'ä', 'ö', 'ü', 'Ä', 'Ö', and 'Ü'.
 We want to provide an extended ctype (character

classification) facet that can identify umlaut characters.
 The new facet type shall belong to the ctype facet family

and must be derived from one of the ctype facet types.

template <class CharT>
class umlaut : public ctype_byname<CharT> {
public:

explicit umlaut(size_t refs);
bool is_umlaut(CharT c) const;

};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (52)

Implementing the Umlaut Facet

template <class CharT>
class umlaut : public ctype_byname<CharT> {
public:

explicit umlaut(size_t refs = 0)
: ctype_byname<CharT>("German",refs) {}

bool is_umlaut(CharT c) const { return do_is_umlaut(c); }
protected:

virtual bool do_is_umlaut(CharT c) const
{ switch(narrow(c))

{ case 'ä': case 'ö': case 'ü':
case 'Ä': case 'Ö': case 'Ü': return true;
default: return false;

}
}

};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (53)

Using the Umlaut Facet

 When the umlaut facet is retrieved via its actual derived class
type, then the is_umlaut() function is accessible.

 If we use the umlaut facet as an ordinary ctype facet and retrieve
it by its base class type, then only the ctype facet interface is
accessible and is_umlaut() cannot be invoked.

locale loc(locale("German"), new umlaut<char>);

if (has_facet<umlaut<char> >(loc))
{ const umlaut<char>& ufac = use_facet<umlaut<char> >(loc);

cout << ufac.is(ctype_base::alpha,'Ä') << endl;
cout << ufac.is_umlaut('Ä') << endl;

}
const ctype<char>& cfac = use_facet<ctype<char> >(loc);
cout << cfac.is(ctype_base::alpha,'Ä') << endl;
cout << cfac.is_umlaut('Ä') << endl; // error

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (54)

Defining a New Facet Family

How can internationalization services that have no relationship
to any of the existing facets be bundled to a new facet
interface and implemented as a new facet family?

Facet Base Classes (recap):
 Each facet base class has a facet identification of its own.
 Typically there is an entire hierarchy of facet classes,

– that inherit and optionally override the facet base class’s interface.
 All facet types in such a hierarchy form a facet family.

– all family members have the same facet identification
 A locale object contains exactly one representative from that

facet family.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (55)

Address Formatting Facet Family

Concrete example: a facet interface for formatting of
international addresses

 define a facet base class that has a new facet interface for
address formatting and a new facet identification

 build two derived address formatting facets
 demonstrate how they can be used in conjunction with

IOStreams for implementation of an address inserter
 explore how the installation of an address formatting facet

in a locale object could be automated and
 suggest a locale factory for that purpose

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (56)

International Address Formats

<FirstName> <LastName>
<Address1>
[<Address2>]
<blank line>
[<CountryCode>-]<PostalCode> <City>

German address
pattern

Dorothea Meier
Krickelberg 5

D-41836 Ratheim

example

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (57)

International Address Formats

<FirstName> <MiddleInitial> <LastName>
<Address1>
[<Address2>]
<City>, <State> <PostalCode>
[<Country>]

US address pattern

Dorothea S. Meier
1 W Superior Place
Chicago, IL 60610
U.S.A.

example

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (58)

The Address Class

template<class charT> class address {
public:
typedef basic_string<charT> String;

address(const String& firstname, const String& secname,
const String& lastname,
const String& address1, const String& address2,
const String& town, const String& zipcode,
const String& state, const String& country,
const String& cntrycode);

string firstName();
...
private:
...
};

basic_ostream<charT>&
operator<<(basic_ostream<charT>& os,const address<charT>& ad);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (59)

The Address Formatting Facet
 define a new facet family for address formatting

– by building a new facet type with an identification of its own
 following the naming conventions of the standard:

– name the address formatting facet address_put
– the formatting operation is a member function called put()

 use output iterators
– to designate the target location of the formatted address string
– make the address facet a class template taking the output iterator

type as a template argument
 use delegation to virtual protected interface

– the public interface consists of non-virtual member functions
that delegate all tasks to protected virtual member functions

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (60)

The Address Formatting Facet

template<class charT,
class OutIter = ostreambuf_iterator<charT> >

class address_put : public locale::facet {
typedef basic_string<charT> String;

public:
typedef OutIter iter_type;
static locale::id id;

address_put(size_t refs = 0) : locale::facet(refs) {}

void put(OutIter oi, const address& addr) const;

protected:
virtual void do_put (OutIter oi,

const address& addr) const;
};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (61)

Facets for Concrete Cultural Areas

What turns our address facet into a German or a US address
facet?

 For many of the standard facets, there are byname versions
that accept the name of a localization environment as a
constructor argument.

 To keep our example focused, we derive an address facet
for each specific cultural area from the base class template
address_put.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (62)

A US Address Facet

template<class charT,
class OutIter = ostreambuf_iterator<charT> >

class US_address_put : public address_put<charT, OutIter> {
public:

US_address_put(size_t refs = 0)
: address_put<charT,OutIter>(refs) {}

protected:
virtual void do_put(OutIter oi,

const address& addr) const
{String s(addr.firstName());
s.append(" ").append(addr.middleInitial()).append(" ").

append(addr.lastName()).append("\n");
...
put_string(oi,s); // helper function; see next slide

}
};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (63)

Helper Function

template<class charT,
class OutIter = ostreambuf_iterator<charT> >

class address_put : public locale::facet {
// ...

protected:
void put_string(OutIter oi, String s) const
{typename String::iterator si, end;
for (si=s.begin(), end= s.end(); si!=end ; si++, oi++)

*oi = *si;
}

};

The helper function put_string() writes the formatted string
to the output iterator.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (64)

The Address Inserter

template <class charT>
basic_ostream<charT>&
operator<< (basic_ostream<charT>& os,

const address<charT>& addr)
{
locale loc = os.getloc();
try {

const address_put<charT>& apFacet
= use_facet<address_put<charT> > (loc);

apFacet.put(os, addr);
} catch (bad_cast&)
{ /* locale does not contain a address_put facet */ }
return (os);

}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (65)

Equipping Locales with Address Facets

 Equip a standard locale with an additional address
formatting facet.

locale usLocaleWithAddressPut

(locale("En_US"), new US_address_put<char,osIter>);

 Construction of a locale object with additional facets of
user-defined types (a non-standard facet) involves:
 retrieval or creation of a standard locale object for the cultural

area,
 retrieval or creation of the additional non-standard facet(s) for that

area, and
 combining both to a new, extended non-standard locale object.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (66)

A Locale Factory

Decouple the process of locale construction from locale use.
 build a factory that handles the construction of locale

objects
 create locale objects "byname":

– they shall have all standard facets for the cultural area
specified by the name,

– plus a number of desired, additional non-standard facets,
like an address formatting facet for instance

 build a hierarchy of locale factories:
– a base locale factory creating standard locale objects and
– derived factories for non-standard locales

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (67)

Base Locale Factory

Remark:
– Usually a factory returns a pointer or reference to the created object.

• derived factories must be allowed to create objects of derived classes, which
can have additional members or vary in the behavior of existing member
functions

– Our factory returns a locale object rather than a pointer or a reference.
• locales are passed around as objects
• internally only a handle to an arbitrary number of facets from arbitrary facet

families

class locale_factory {
public:

virtual locale make_locale (const char* name) const
{ return locale(name); }

};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (68)

Concrete Locale Factory

 uses the map container from the standard library for
mapping a locale name to the respective address_put
facet, so that non-standard locale objects can be created

 returns a locale containing all standard facets and, if a US
or a German locale is requested, additionally an
address_put facet

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (69)

Concrete Locale Factory
class address_locale_factory : public locale_factory {
typedef ostreambuf_iterator<char> osIter;

public:
address_locale_factory()
{ facets["En_US"] = new US_address_put<char,osIter>(1);

facets["De_DE"] = new DE_address_put<char,osIter>(1);
...

}
~address_locale_factory()
{ delete facets["En_US"];

delete facets["De_DE"];
...

}

locale make_locale (const char* name) const;

private:
map<string, address_put<char,osIter>* > facets;

};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (70)

Concrete Locale Factory

class address_locale_factory : public locale_factory {
public:
address_locale_factory();
~address_locale_factory();

locale make_locale (const char* name) const
{ if (facets.find(name) == facets.end())

return // name unknown; make standard locale
locale_factory::make_locale(name);

else
return // make extended locale

locale(locale_factory::make_locale(name),
(*(facets.find(name))).second);

}
private:

map<string, address_put<char, osIter>* > facets;
};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (71)

Putting the pieces together

 A locale that has an address facet installed, must be
provided on invocation:

void printAddress(ostream& os,
const address<char>& address,
locale loc)

{
locale original = os.imbue(loc);
os << address << endl;
os.imbue(original);

}

printAddress
(cout,
myAddress,
address_locale_factory().make_locale("German")

);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (72)

User-Define Facets

Mandatory. A user-defined facet type must
 be derived from class locale::facet and
 have a facet identification in form of a static data member named

id of type locale::id.

Recommended.
 A facet name should follow the naming conventions of the

standard facets.
 Formatting and parsing operations should access source or

destination via iterators.
Formatting and parsing facets should be templatized on the
iterator type and use stream buffer iterators as a default.

 Public member function should delegate to protected member
functions.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (73)

Wrap-Up

 Locales are containers of facets.
– responsible for memory management and retrieval of facets

 Facets are bundles of related internationalization services
and information.

– designed for use in conjunction with a locale

 Use of I18N services is usually through
– streams (for parsing and formatting of text representations) or
– convenience functions

 C++ standard locales
– ready-to-use services in form of standard facets
– framework to be extended by user-defined facets

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (74)

Wrap-Up

 unusual design
– access to facets through their base type

 advantage
– extremely flexible
– facet interfaces are not restricted in any way
– still the locale can maintain them no matter what type the are of
– still it’s type-safe; facets are retrieved via their actual type

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (75)

Recommended Reading

Angelika Langer & Klaus Kreft
Standard C++ IOStreams and Locales
Addison Wesley, January 2000

David Schmitt
International Programming for Windows
Microsoft Press , April 2000

Bjarne Stroustrup
The C++ Programming Language, Special Edition
Addison Wesley, January 2000

Nicolai Josuttis
The C++ Standard Library
Addison-Wesley, July 1999

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.langer.camelot.de/
last update: 5/10/2010 ,20:03 (76)

Contact Info

Angelika Langer
Training & Mentoring
Object Oriented Software Development with C++ and Java

email: langer@camelot.de
http://www.langer.camelot.de/

