

Lambda Expressions in Java

Reference

Angelika Langer & Klaus Kreft

Angelika Langer Training/Consulting - www.AngelikaLanger.com

www.AngelikaLanger.com�

Lambda Expressions in Java - Reference

by Angelika Langer & Klaus Kreft - www.AngelikaLanger.com

Cover design by Angelika Langer

Copyright @ 2013 by Angelika Langer & Klaus Kreft. All rights reserved.

All rights reserved. No part of this publication my be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior permission of the authors.

The electronic version of this book (both PDF and EPUB format) may be downloaded, viewed on-
screen, and printed for personal, non-commercial use only, provided that all copies include the
following notice in a clearly visible position: “Copyright @ 2013 by Angelika Langer & Klaus Kreft.
All rights reserved.”

While every precaution has bee taken in the preparation of this book, the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN n.n

Pre-Release, November 16, 2013

www.AngelikaLanger.com�

Preface 3

Table of Contents
PREFACE ... 5

Prerequisites .. 5
How to Use This Book.. 5
How This Book Is Organized ... 7
How to Contact the Authors... 8
Acknowledgements ... 8

QUESTIONS & ANSWERS .. 9
LAMBDA EXPRESSIONS ... 9

Syntax... 9
The Meaning of Names - Scopes, Shadowing and Binding 9
The Meaning of Jumps and Exits ... 11
Recursive and Generic Lambda Expressions... 12

METHOD AND CONSTRUCTOR REFERENCES .. 12
FUNCTIONAL INTERFACES... 13
TARGET TYPING.. 14
NON-ABSTRACT INTERFACE METHODS... 16

Default Interface Methods.. 16
Static Interface Methods .. 17

PROGRAMMING WITH LAMBDAS ... 18
LAMBDA EXPRESSIONS.. 20

SYNTAX... 20
Body ... 21
Parameter List.. 22
Return Type and Throws Clause .. 26

THE MEANING OF NAMES - SCOPES, SHADOWING, AND BINDING 27
Scopes .. 27
Nested Scopes... 29
Lexical Scoping for Lambda Expressions .. 35
The Meaning of this and super in Lambda Expressions......................... 37
Binding Restricted to Implicitly Final Variables.................................... 39

THE MEANING OF JUMPS AND EXITS ... 46
Local vs. Non-Local Jumps .. 46
Return and Throw Statements in Lambda Expressions.......................... 47

RECURSIVE LAMBDA EXPRESSIONS .. 49
GENERIC LAMBDA EXPRESSIONS NOT PERMITTED 50

METHOD AND CONSTRUCTOR REFERENCES................................. 53
REFERENCE TO CONSTRUCTOR ... 54
REFERENCE TO STATIC METHOD... 57
REFERENCE TO NON-STATIC METHOD.. 60

Unbound Receiver.. 60
Bound Receiver .. 63

FUNCTIONAL INTERFACES... 68
DEFINITION ... 69
FUNCTIONAL INTERFACES WITH ADDITIONAL NON-ABSTRACT METHODS . 69

4 Preface

ANNOTATION @FUNCTIONALINTERFACE ... 71
GENERIC FUNCTIONAL INTERFACES.. 72
INTERSECTION OF FUNCTIONAL INTERFACES .. 74

TARGET TYPING... 76
DEFINITION ... 76
CLASSIFICATION OF EXPRESSIONS .. 77

Standalone Expressions ... 78
Poly Expressions .. 78

POLY CONTEXTS ... 79
TARGET TYPING FOR POLY EXPRESSIONS ... 80

Target Typing for Instance Creation Expressions with the "Diamond
Operator" ... 80
Target Typing for Invocation of Generic Methods................................. 82
Target Typing for Conditional Operator Expressions 83
Target Typing for Method and Constructor References......................... 84
Target Typing for Lambda Expressions ... 90
Wrap-Up .. 93

TYPE INFERENCE ISSUES ... 94
Common Type Inference Issues.. 94
Infrequent Type Inference Issues ... 108

NON-ABSTRACT METHODS IN INTERFACES 117
DEFAULT INTERFACE METHODS ... 117

Modifiers - Permitted and Prohibited .. 119
Multiple Inheritance... 120
Programming with Default Methods.. 122
Ambiguities Involving Default Interface Methods................................ 127

STATIC INTERFACE METHODS... 135
Static vs. Default Interface Methods .. 136
Modifiers - Permitted and Prohibited .. 138
Static Interface vs. Static Class Methods ... 138
Inheritance of Static Methods .. 140
Programming with Static Interface Methods 142

PROGRAMMING WITH LAMBDAS... 147
THE EXECUTE-AROUND-METHOD PATTERN... 148

Data Access.. 150
Return Value .. 150
Primitive Types .. 151
Unchecked Exceptions ... 153
Checked Exceptions ... 154
Wildcards Instantiations of Functional Interfaces............................... 159

RUNTIME REPRESENTATION OF LAMBDA EXPRESSIONS 165
TRANSLATION OF LAMBDA EXPRESSIONS... 165
SERIALIZATION OF LAMBDA EXPRESSIONS ... 165

APPENDIX.. 166
SOURCE CODE OF EXECUTE-AROUND-METHOD PATTERN CASE STUDY .. 166

INDEX ... 169

Preface 5

Preface

This is part II of a series of books on "Lambdas & Streams in Java 8".
The series aims to provide comprehensive information about new
language features in Java 8 (collectively referred to as "Lambdas") and
new JDK abstractions for bulk operations on collections (collectively
referred to as "Streams"). The series has four parts:

 Part I: Lambda Expressions in Java - Tutorial

 Part II: Lambdas Expressions in Java - Reference

 Part III: Streams - Tutorial

 Part IV: Streams - Reference

This is part II entitled "Lambdas Expressions in Java - Reference". It
provides details regarding all aspects of lambda expressions, method and
constructor references, functional interfaces, default interface methods,
and static interface methods.

Prerequisites

Before you read this book you should be familiar with the basics of
lambda expressions and the related new language features. This kind of
basic understanding can be acquired by glossing over a tutorial such as
part I of the series. Part I (The Lambda Tutorial) gives an overview of the
new language features, briefly explains what they look like and what they
can be used for. Naturally, the tutorial omits many details - which in turn
this book (Part II - The Lambda Reference) aims to provide.

In addition you should be familiar with the basics of the stream API
because many of the examples in this book use the stream API without
explaining it in detail. A basic understanding of the stream API can be
gained by reading a tutorial such as Part III (The Stream Tutorial) of the
series. The JavaDoc of JDK 8 plus the Stream Tutorial provide enough
information to easily comprehend the examples.

How to Use This Book

While the tutorial is best read cover to cover, the reference is suitable for
selective reading. It can be consulted whenever you are interested in
details regarding a certain aspect of lambdas.

6 Preface

In order to promptly find the information related to the topic at hand
there you can use:

 the table of contents,

 the questions & answers section, and

 the index.

They point to the respective relevant sections that might contain the
information you are looking for.

While the tutorial (Part I - The Lambda Tutorial) provides an introduction
and overview, this book (Part II - The Lambda Reference) intends to
provide details regarding lambdas and related language features.

For illustration of the level of detail that this book (Part II - The Lambda
Reference) covers, let us consider the issue of type inference. It is a
process that the compiler applies for lambda expressions and method
references in order to determine their static type. Type inference is a
detail that you usually need not care about because the compiler does it
automatically behind the curtain. Most of the time you will not even
notice that type inference happens at all. But, occasionally, you might run
into a situation where automatic type inference fails and you receive error
messages during compilation. Then you can use the lambda reference to
learn about the principles of type inference so that you can figure out how
to cope with a type inference failure.

Occasionally, the reference covers general information about certain
language features before it gets to lambda expressions. This is in order to
put the issues related to lambdas into perspective. An example is the
section on "The Meaning of Names - Scopes, Shadowing, and Binding".
It first explains the scoping rules in classic Java before it addresses the
meaning of names in lambda expressions. Naturally, if you are already
familiar with scopes and name binding in Java you might want to skip
what you are familiar with and move forward to the lambda related
information. As an aid a hint that points to the lambda related issues is
provided at the beginning of the section.

Other sections discuss features might be useful in rare situation, but that
do not exist in Java (because the language designers decides so). An
alternative or work-around is provided, if available. Still, not everybody is
interested reading about corner issues and absent features; for this reason
there is a hint at the beginning of the respective sections that cleary states
that "this is an esoteric corner issue". An example is the section on
"Generic Lambda Expressions". They do not exist and you can method
references or anonymous inner classes instead.

Preface 7

How This Book Is Organized

Chapter 1 is devoted to LAMBDA EXPRESSIONS.

It covers syntax details, explains lexical scoping and illustrates the use of
names in lambda expressions, and discusses the use of break, continue,
return, and throw statements used in lambda expressions. The section
also points out that certain features are not supported in Java; this
concerns recursive lambda expressions and generic lambda expressions.

Chapter 2 covers METHOD AND CONSTRUCTOR REFERENCES.

It illustrates the syntax variants for references to constructors, non-static
and static methods and provides many examples thereof.

Chapter 3 covers FUNCTIONAL INTERFACES. It explains what a
functional interface is and what distinguishes it from a regular interface.
The role of functional interfaces in conjunction with lambda expressions
and method/constructor reference is discusses. Special cases such as
generic functional interfaces and intersections of function interfaces are
mentioned.

Chapter 4 explains TARGET TYPING in general and type inference for
lambda expressions and method/constructor references in particular. We
take a look under the hood of the compiler and learn about poly
expressions, of which lambda expressions are a special case. Target typing
requires an inference context and for this reason lambda expressions and
method/constructor references may only appear in a legal inference
context. The chapter touches on all forms of inference contexts that are
legal in Java and also discusses type inference failure.

Chapter 5 discusses the RUNTIME REPRESENTATION. This goes
into the internals of representing lambda expressions in the JVM. It
explains technical details such a s the lambda factory the use of the
invokedynamic byte code instruction, the generation of bridge methods,
and the serialization of lambda expressions.

Chapter 6 covers NON-ABSTRACT INTERFACE METHODS.
Interfaces can have two types of non-abstract interface methods, namely
default methods and static interface methods. Both are explained in this
chapter. Via default methods, the debatable feature of multiple
inheritance of implementation has sneaked into Java. The chapter
discusses whether multiple inheritance with default methods is harmful or
not.

Chapter 7 is devoted to PROGRAMMING WITH LAMBDAS. It
discusses the execute-around-method pattern as an exampel of a

8 Preface

programming idiom that is convenient and elegant to use by beans of
lambda expressions.

How to Contact the Authors

Additional information regarding the book series can be found at:

http://www.AngelikaLanger.com/Lambdas/Lambdas.html

You can address comments and questions about the book series to the
authors using the contact form at:

http://www.AngelikaLanger.com/Forms/Lambda.html.

Acknowledgements

Many thanks to all colleagues, readers, and reviewers who took the time to
read the material and provided constructive feedback. A number of
individuals at Oracle patiently answered questions we posed regarding
lambda expressions and streams. Our thanks to Brian Goetz, Maurizio
Cimadamore, and Paul Sandoz.

Questions & Answers 9

Questions & Answers

Lambda Expressions

Syntax

What is the syntax for a lambda
expression?
It consists of a parameter list, the "->"
symbol, and a body.

syntax
lambda
expression

20

What does the body of a lambda
expression look like?
It is either an expression or a sequence of
statements.

syntax
lambda body

21

What does the parameter list of a lambda
expression look like?
It consists of none, one, or several
parameters. Each parameter has a name and
a type. The name must be specified; the
type can be specified or omitted.

syntax
lambda
parameter list

21

How do I specify return type and
exceptions of a lambda?
Not at all; the return type is always inferred.

lambda return
type / throws
clause

26

The Meaning of Names - Scopes, Shadowing and Binding

What is a scope?
A source code section in which a name can
be used without qualification. Examples are
classes and methods.

scopes 27

What is a name shadowing and name
binding?
Shadowing means that an inner name hides
an outer name.

shadowing 28

What happens if a nested class declares
the same name as its enclosing class?
The inner name shadows the outer name.

shadowing -
class nested
into class

29

10 Questions & Answers

What happens if a method declares the
same name as its enclosing class?
Names in a method shadow names in the
enclosing class.

shadowing -
method
nested into
class

30

What happens if a lambda expression
declares the same name as its enclosing
class?
The inner name shadows the outer name.

shadowing -
lambda
expression
nested into
class

31

What happens if a local or anonymous
inner class declares the same name as its
enclosing method?
The inner class defines new variables in its
class scope that shadow variable with
identical names in the enclosing method
scope

shadowing -
class nested
into method

32

What happens if a lambda expression
declares the same name as its enclosing
method?
The compiler will complain about a
duplicate definition because every name
used inside a lambda expression has the
same meaning as in the enclosing scope.

shadowing -
lambda
expression
nested into
method

34

What is lexical scoping?
If a scope is part of its enclosing scope, i.e.,
if an unqualified name used in the inner
scope refers to a name defined in the outer
scope.

lexical
scoping

34

What do this and super mean in a lambda
expression?
They mean the same as in the enclosing
scope.

meaning of
this/super

36

Why is name binding in a lambda
expression restricted to implicitly final
variables of the enclosing scope?
In order to preserve the properties of local
variables regarding lifetime and thread-
safety.

binding to
finals

39

Questions & Answers 11

Can a name in a lambda bind to a
primitive type local variable of the
enclosing scope?
Yes, but the lambda cannot modify the
primitive type local variable.

binding to
primitive
types

39

Can a name in a lambda bind to a
reference type local variable of the
enclosing scope?
Yes, and the lambda may modify the
referenced object, but must not modify the
reference variable itself.

binding to
reference

41

What is the array boxing hack?
A dubious and error-prone work-around for
the restriction that lambda expressions can
only bind to effectively final variable of the
enclosing context.

array boxing
hack

43

Do anonymous and local inner classes -
like lambdas - have access to effectively
final variables?
Yes, since Java 8 the explicit final declaration
can be omitted.

effectively
final

44

Can a lambda have bindings to non-final
fields of the enclosing scope?
Yes, fields accessed in a lambda can be
modified.

binding to
fields

44

The Meaning of Jumps and Exits

What does break or continue mean in the
body of a lambda?
It is a local jump in a loop or switch inside
the lambda. Non-local jumps out of the
lambda into the enclosing context are illegal.

break /
continue

46

What does return or throw mean in the
body of a lambda?
It means a regular or exceptional return
from the lambda.

return /
throw

47

12 Questions & Answers

Recursive and Generic Lambda Expressions

Can lambda expressions be recursive?
No, they can't. Use anonymous inner
classes instead.

recursive
lambdas

49

Can lambda expressions be generic?
No, they can't. Use method references
instead.

generic
lambdas

50

Method and Constructor References

What is a method or constructor
reference?
A shortcut notation for a lambda created
from an existing method or constructor.

method /
constructor
references

53

How do I refer to the constructor of a
class or array?
Via typename::new.

constructor
references

54

Can I refer to a particular signature of an
overloaded constructor?
No, you can only refer to a name, but not to
a signature.

reference to
overloaded
constructor

55

How do I refer to a generic constructor of
a class?
There is no difference between a reference
to a generic or non-generic constructor; the
generic constructor's type parameters are
always inferred.

reference to
generic
constructor

56

How do I refer to a static method?
Via typename :: methodname.

reference to
static method

57

How do I refer to a non-static method?
Via typename :: methodname if the receiver
is unspecified.

Via expression :: methodname where the
expression is the receiver.

reference to
non-static
method

60

Questions & Answers 13

Functional Interfaces

What are functional interfaces needed
for?
Functional interfaces are needed as the
target type of a lambda expression or
method / constructor reference.

functional interface 68

What is a functional interface?
An interface with one abstract method.

definition of
functional interface

68

Can a functional interface have non-
abstract methods?
Yes, it can have default methods and
methods inherited from Object.

non-abstract
methods in
functional interfaces

69

What is the purpose of the
@Functional Interface annotation?
It indicates that an interface is intended
as a functional interface and triggers
certain compiler checks.

@Functionalnterface
annotation

71

Can functional interfaces be generic?
Yes.

generic functional
interface

71

Are parameterizations of a generic
functional interface still functional
interfaces?
Yes. If we take a functional interface
and replace its type parameters by
concrete types the resulting
parameterization is still a functional
interface.

parameterization of
generic interface

72

Is the raw type of a generic functional
interface still functional?
Yes. If we drop the type parameters of
a functional interface then the resulting
raw type is a functional interface as well.

raw type of generic
interface

72

Is the intersection of several
functional interfaces functional, too?
Yes, if the intersection contains a single
abstract method.

intersection of
functional interfaces

74

14 Questions & Answers

Target Typing

What does the term "target type"
mean?
When an expression appears in a
context, its type must be compatible
with a type expected in that context.
The expected type is called the target type.

target type 76

What is a standalone expression?
An expression whose type is determined
by the expression's content.

standalone
expression

77

What is a poly expression and in
which context may it appear?
An expression whose type is context
dependent.

poly expressions 78

What is a poly context?
A context that provides information for
inference of a poly expression's type.

poly context 79

How is the target type inferred if the
"diamond operator" is used?
By means of the left-hand side type of
an assignment or a method's declared
argument type.

target typing for
diamond operator

80

How is the target type inferred when
generic methods are invoked?
By means of the left-hand side type of
an assignment or a method's declared
argument type.

target types with
generic method

114

How is the target type inferred for a
conditional operator expression?
By means of the left-hand side type of
an assignment or a method's declared
argument type.

target typing for
conditional operator

80

How is the target type of a method
reference inferred?
By means of the left-hand side type of
an assignment or a method's declared

target typing for
method/constructor
references

84

Questions & Answers 15

argument type, or the target type of a
cast, and comparison of the function
descriptors.

Do throws clauses matter in the target
typing process?
Yes, they must be compatible.

target typing and
checked exceptions

86

Do return types matter in the target
typing process?
Yes, they must be compatible.

target typing and
return type

89

How is the target type inferred for
lambda expressions?
By means of the left-hand side type of
an assignment or a method's declared
argument type, or the target type of a
cast, and comparison of the function
descriptors.

target typing for
lambda expressions

89

What is an intersection type?
A synthetic type that is a subtype of
several supertypes.

intersection type 92

Can overloaded methods serve as
method invocation context for a poly
expression?
Yes, they can, but they may lead to error
messages due to ambiguity.

target typing &
overloading

96

What can I do if I pass a lambda to an
overloaded method and the compiler
rejects it due to an ambiguity?
Specify the lambda's arguments types
explicitly.

use explicit lambdas 98

Is overloading generally discouraged
in Java 8?
No, it causes problems only in
conjunction with lambdas, i.e. do not
overload on different functional types

avoid overloading on

functional types
105

Can generic functional interfaces be
implemented by lambda expressions
and method/constructor references?

target typing &
generic target types

111

16 Questions & Answers

Yes.

What happens if the target type is a
wildcard parameterization of a generic
functional interface?
The compiler replaces the wildcard by
its bound (or object if unbounded).

target typing &
wildcards

111

Can a functional interface with a
generic method be implemented by
lambda expressions and method/
constructor references?
No, for lambda expressions. Yes, for
method/constructor references.

target types with
generic method

114

Non-Abstract Interface Methods

What is a non-abstract method in an
interface?
A non-abstract interface method has an
implementation. It is either a default
method or a static method.

non-abstract
interface method

117

Default Interface Methods

What are default methods intended
for?
They permit adding functionality to
existing interfaces without breaking the
subclasses.

default methods 117

Can default methods be private or
protected?
No, they are always public.

accessibility of
default methods

119

Why can't default methods be final?
Because it could break existing
subclasses.

final default
methods

120

Do default methods add multiple
inheritance to Java?
Yes, default methods in interfaces
permit multiple inheritance of

multiple inheritance 120

Questions & Answers 17

functionality.

What is the "deadly diamond of
death"?
An error-prone form of multiple
inheritance.

deadly diamond of
death

121

Is multiple inheritance in Java
dangerous?
No.

peril of multiple
inheritance

121

What are default methods used for?
Evolution of existing interfaces plus API
development in general

programming with
default methods

122

Can multiple inheritance involving
default methods lead to conflicts and
ambiguities?
Yes.

ambiguous default
methods

127

Static Interface Methods

What is a static interface method?
A method in an interface with the static
modifier and an implementation.

static inferface
methods

135

How do static and default interface
methods differ?
Like static class methods differ from
non-static class methods: static method
cannot access non-static members and
static methods cannot be overridden.

difference static /
default method

135

Can static methods be private or
protected?
No, they are always public.

accessibility of static
interface methods

138

How do static interface and static
class methods differ?
Static interface methods are not
inherited, must be invoked via their
declaring interface type and must not be
invoked via an instance.

difference static
interface / class
methods

138

18 Questions & Answers

Why is inheritance of static interface
methods illegal?
Because it could break existing code.

inheritance of static
interface methods

140

What are static interface methods
used for?
For implementation of static operations
that are closely related to an interface.

programming with
static interface
method

142

Programming with Lambdas

What is the execute-around-method
pattern?
A programming technique for
eliminating code duplication.

 ex
ecute-
araound-
method
pattern

148

How do I handle functions with
different return types when I design a
functional interface?
Via overloading on a generic return
type and the void return type.

return types in
functional API design

150

How do I cope with primitive types
when I design a functional interface?
Via overloading on reference and
primitive types; while it eliminates the
boxing/unboxing overhead it increases
the risk of overload resolution failure.

primitive types in
functional API design

151

How can I cope with checked
exception when I design a functional
interface?
By exception tunnelling or adding
generic throws clauses.

checked exceptions in
functional API design

154

What is exception tunnelling?
Wrapping checked exceptions into
unchecked exceptions.

exception tunnellling 154

What is exception transparency?
A compiler strategy for inference of
checked exceptions raised by a lambda.

exception transparency 158

Questions & Answers 19

How do I correctly use generic
functional interfaces?
When generic functional interfaces
appear as arguments of operations they
are often parameterized with a
wildcard.

wildcards in functional
API design

159

20 Lambda Expressions

Lambda Expressions
syntax lambda expression

Syntax

A lambda expression describes an anonymous function. Like a function it
has a parameter list and a body. Let us start with a simplified version of
the syntax. We will get to the detailed syntax later on.

LambdaExpression:
 LambdaParameters '->' LambdaBody

LambdaParameters:
 Identifier
 '(' ParameterList ')'

LambdaBody:
 Expression
 Block

A lambda expression consists of a parameter list, the arrow symbol "->",
and a body.

Here are a couple of examples of lambda expressions and their equivalent
as a method with an arbitrary name (namely nn in the table below).

lambda expression equivalent method

() -> { System.gc(); } void nn() { System.gc(); }

(int x) -> { return x+1; } int nn(int x) return x+1; }

(int x, int y)

 -> { return x+y; }

int nn(int x, int y)

{ return x+y; }

(String... args)

 ->{return args.length;}

int nn(String... args)

{ return args.length; }

(String[] args)

 -> {

 if (args != null)

 return args.length;

 else

 return 0;

}

int nn(String[] args)

{

 if (args != null)

 return args.length;

 else

 return 0;

}

Lambda Expressions 21

(Future<Long> f)

 -> { return f.get(); }

Long nn(Future<Long> f)

 throws ExecutionException,

 InterruptedException

{ return f.get(); }

These lambdas look similar to methods. The difference is that they do
not have a name and neither the return type nor the throws clause is
declared. Both are automatically inferred by the compiler.
syntax lambda body

Body

The lambda body can be a block of one or more statements. It can also
be as simple as a plain expression.

Here are a couple of examples of lambda expressions with a body that
consist of no more than an expression:

lambda expression equivalent method

() -> System.gc() void nn() { System.gc(); }

(int x) -> x+1 int nn(int x) { return x+1; }

(int x, int y) -> x+y int nn(int x, int y)

{ return x+y; }

(String... args)

 -> args.length
int nn(String... args)

{ return args.length; }

(String[] args)

 ->

(args!=null)? args.length : 0

int nn(String[] args)

{

 return (args != null)

 ? args.length: 0;

}

(Future<Long> f)

 -> f.get()
Long nn(Future<Long> f)

throws ExecutionException,

 InterruptedException

{ return f.get(); }

22 Lambda Expressions

Here are a couple of counter examples, namely lambda expressions that
do no compile:

lambda expression at compile-time

(int x) -> return x+1 error: not a statement

The return keyword can only appear
in a statement and statements must
be terminated by a semicolon.

(int x) -> return x+1; error: illegal start of expression

A statement can only appear in a
block, i.e. the statement must be
enclosed in curly braces.

(int x) -> { return x+1; } fine

(Future<Long> f) -> { f.get() } error: ';' expected

In a block only statements are
permitted; a plain expression is
illegal.

(Future<Long> f)

 -> { f.get(); }

error: missing return value

In a block there must be a return
statement if a return value is
exptected.

(Future<Long> f)

 -> { return f.get(); }
fine

syntax lambda parameter list

Parameter List

There are a couple of variations of the parameter list. The parameter types
of a lambda expression may either all be declared or all inferred. The
inferred types are derived from the context in which the lambda
expression appears.

Single Parameter with Inferred Type

If the parameter list consists of exactly one parameter then it can be reduced to an
identifier, i.e. the name of the parameter.

Lambda Expressions 23

Examples of a parameter list reduced to a single identifier:

lambda expression at compile-time

x -> x+1 fine

args -> args.length fine

f -> { return f.get(); } fine

f -> f.get() fine

int x -> x+1 error: illegal

If the parameter type is specified
then the enclosing parenthesis are
mandatory.

(int x) -> x+1 fine

x,y -> x+y error: illegal

If there is more than one
parameter then the enclosing
parenthesis are mandatory.

(int x,int y) -> x+y fine

The notation without a declared type requires that the compiler can infer the
parameter type from the context in which the lambda expression appears.

The syntax permits further variations, among then an empty parameter list, a
parameter list without declared parameter types, and a variable parameter list.
Here is the parameter list's detailed syntax:

LambdaParameters:
 Identifier
 '(' InferredFormalParameterList ')'
 '(' FormalParameterListopt ')'

InferredFormalParameterList:
 Identifier
 InferredFormalParameterList ',' Identifier

24 Lambda Expressions

FormalParameterList:
 LastFormalParameter
 FormalParameters ',' LastFormalParameter

FormalParameters:
 FormalParameter
 FormalParameters, FormalParameter

FormalParameter:
 VariableModifiersopt Type VariableDeclaratorId

LastFormalParameter:
 VariableModifiersopt Type '...' VariableDeclaratorId
 FormalParameter

Multiple Parameters with Inferred Types

The InferredFormalParameterList is a list of parameters without type
specifications. The enclosing parentheses are mandatory. The declared type can
only be omitted when the compiler can infer the parameter type from the context
in which the lambda expression appears.

Examples of the InferredFormalParameterList:

lambda expression at compile-time

(int x) -> x+1 fine

 int x -> x+1 error: illegal

If the parameter type is specified
then the enclosing parenthesis are
mandatory

(x) -> x+1 fine

 x -> x+1 fine (because there is only one
parameter)

(int x,int y) -> x+y fine

 int x,int y -> x+y error: illegal

If the parameter type is specified
then the enclosing parenthesis are
mandatory

Lambda Expressions 25

(x,y) -> x+y fine

 x,y -> x+y error: illegal

If there is more than one parameter
then the enclosing parenthesis are
mandatory.

Regular Parameters with Declared Types

The regular FormalParameterList is a list of parameters as we know it from
methods. The enclosing parentheses are mandatory. The parameter list can be
empty, in which case it consist of empty brackets. It can contain one or more
parameters with a declared type. If one parameter has a declared type, then all
parameters must have a declared type. Mixing inferred and declared types is
illegal. The declared type can have modifiers like final for instance. The last
parameter may be a variable parameter, also know as "varargs" parameter like
String... for instance.

Examples of the regular FormalParameterList:

lambda expression at compile-time

() -> 42 fine

(int x) -> x+1 fine

(int x,int y) -> x+y fine

(String fmt, Object... args) ->
String.format(fmt,args)

fine

(int x, y) -> x+y error: illegal

Mixing inferred and
explicit parameter types
is illegal.

(final int x) -> x+1 fine

(final x) -> x+1 error: illegal

Only explicit parameter
types can have

26 Lambda Expressions

modifiers.
lambda return type / throws clause

Return Type and Throws Clause

Different from a method a lambda expression does neither declare a
return type nor a throws clause. Both the lambda's return type and its
throws clause are always automatically inferred by the compiler from the
context in which the lambda expression appears.

Lambda Expressions 27

The Meaning of Names - Scopes, Shadowing, and
Binding

Lambda expressions are frequently compared to methods on the one hand and
anonymous inner classes on the other hand. The syntax of lambda expressions is
similar to the syntax of methods, as we have seen in the section on "Syntax". At
the same time, lambda expressions are used in places where traditionally
anonymous inner classes were used (see the section on "What are lambda
expressions?" in the Lambda Tutorial document for examples).

The key difference between the "new" lambda expressions and "old" methods
and anonymous inner classes is that classes and methods have their own scopes.
Methods and classes can declare names that are in the respective method or class
and shadow corresponding names in enclosing scopes. Lambda expressions, in
contrast, are part of their enclosing scope (i.e., they are NOT scopes of their
own). Names declared in a lambda expression contribute to the enclosing scope;
they never shadow names in the enclosing scope.

In the following we will discuss what a variable name means in the body
of a lambda expression, in a method body, or in an anonymous inner
class, and what happens if the same name is declared in different,
potentially nested scopes.

Note: In the subsequent sections we first explain scopes, name binding,
and shadowing in general before we look into name binding issues related
to lambda expressions. If you are already familiar with the concept of
scopes, name binding, and shadowing, feel free to skip the subsequent
sections and continue with the section on "Lexical Scoping for Lambda
Expressions".

scopes

Scopes

Java has a notion of scopes. A scope is the part of the program text within which a
name can be referred to without any qualification, i.e., by using the simple name.
Examples of scopes are classes and methods.

For instance, if we define a static field in a class then the scope of this
field is the entire class; we can use the field's name everywhere within the

28 Lambda Expressions

class without needing any qualification. If we refer to the name from
outside of the class, in contrast, we need to qualify the name.

Example of a name defined in class scope:

public class Container {
 public static final int MAX_CAPACITY = 1024;
 public Container() {
 ... = new Object[MAX_CAPACITY]; // simple name
 }
}
public class Test {
 public static void main(String... args) {
 if (size < Container.MAX_CAPACITY) // qualified name
 ...
 }
}

The scope of the name MAX_CAPACITY is the declaring class Container. The
name MAX_CAPACITY can be used inside the class scope without qualification and
must be qualified (by the name of its declaring class Container) outside of the
class scope, e.g. when used in class Test.

Scopes are distinct, i.e., the same name can appear in different scopes and refer to
different entities. For instance, another class Sequence might also declare a field
named MAX_CAPACITY. We would then have two separate fields, namely
Container.MAX_CAPACITY and Sequence.MAX_CAPACITY.

public class Container { // declaring scope #1
 public static final int MAX_CAPACITY = 1024;
 ...}
}
public class Sequence { // declaring scope #2
 public static AtomicInteger MAX_CAPACITY
 = new AtomicInteger();
 ...
 }
}

public class Test() { // using scope
 public static void main(String... args) {
 if (Container.MAX_CAPACITY
 <= Sequence.MAX_CAPACITY.get())
 ...
 }
}

shadowing

Lambda Expressions 29

Nested Scopes

Matters are simple as long as the scopes are clearly separated like in the example
above. But, what happens if scopes are nested, e.g., if one class appears in the
scope of another class, and both classes declare the same name? Depending on
the situation, two effects can occur:

 shadowing: the inner name shadows the outer name, or

 binding: the inner name is bound to the outer name.

Shadowing means that use of the simple name in the inner scope refers to the inner
entity and the outer entity is hidden, i.e., shadowed. In order to refer to the
shadowed outer entity a qualification is needed.

Binding means that use of the simple name in the inner scope refers to the outer
entity and there is no separate inner entity. Both the inner and the outer name
refer to the same entity declared in the outer scope.

In the following we will look into different situations in which names are
shadowed. We will first consider scopes that are nested into a class and then
scopes that are nested into a method.

Names in a Class Scope

In this section we discuss name binding issues in scopes that are nested
into a class.

A class is a scope. It may contain other entities, such as methods, nested
or inner classes, or lambda expressions. Some of these entities are also
scopes, i.e., we have nested scopes in these situations. The outer and the
inner scope might define the same name. How does name binding work
in case of scopes nested into a class scope?

We will discuss the following situations:

 a class defined in another class
 a method defined in a class
 a lambda expression defined in a class

shadowing - class nested into class

Nested Scopes#1: A Class Nested into another Class

What happens if classes are nested, e.g., if one class appears in the scope
of another class, and both classes declare the same name? Then the inner
name shadows the outer name.

30 Lambda Expressions

Example of a class nested into a class scope:

public class Container { //
outer scope
 public static final int MAX_CAPACITY = 1024;
 public Container() {
 ... = new Object[MAX_CAPACITY];
 }
 private static class NestedSequence { //
inner scope
 public static AtomicInteger MAX_CAPACITY;
 public NestedSequence() {
 MAX_CAPACITY
 = new AtomicInteger(Container.MAX_CAPACITY);
 }
 }
}

public class Test() { //
unrelated using scope
 public static void main(String... args) {
 if (Container. MAX_CAPACITY
 <= Container.NestedSequence.MAX_CAPACITY.get())
 ...
 }
}

Class NestedSequence is declared in the scope of the enclosing class Container.
Both classes declare a field MAX_CAPACITY. When the simple name
MAX_CAPACITY is declared in the nested class it shadows the name MAX_CAPACITY
from the enclosing class. If we want to refer to the MAX_CAPACITY field from the
enclosing scope we need to use the qualified name Container.MAX_CAPACITY.
shadowing - method nested into class

Nested Scopes#2: A Method Nested into a Class

Methods, too, are scopes. If we define a name in a method then the scope of this
name is the method including the method's parameter list. Methods always have
an enclosing scope, namely the scope of their declaring class. In analogy to
nested classes, names in a method shadow names declared in the enclosing class.

Example of methods nested into a class scope:

class Sequence { // outer scope
 private int capacity = 0;

 public Sequence(int capacity) { // inner scope #1
 int tmp = capacity;
 ...

Lambda Expressions 31

 this.capacity = tmp;
 }
 public void resize(int capacity) { // inner scope #2
 int tmp = capacity;
 ...
 this.capacity = tmp;
 }
}

Both the constructor and the resize method declare the name tmp. Each
method is a scope of its own and the two entities named tmp do not collide.

The enclosing class declares the name capacity and both the constructor
and the resize method declare the same name capacity. We have three
scopes (class, constructor, and method) and therefore we have three
entities named capacity. The use of the simple name capacity inside the
constructor or method shadows the name capacity declared in the
enclosing class. If we want to refer to the enclosing capacity inside a
constructor of method we must use the qualified name this.capacity.
shadowing - lambda expression nested into class

Nested Scopes#3: A Lambda Expression Nested into a Class

When lambda expressions appear on the class level, the rules for the names they
declare are the same as for methods: names in the lambda expression shadow
names declared in the enclosing class.

Example of lambda expression nested into a class scope:

class Sequence { // outer scope
 private int capacity = 0;

 public void resize(int capacity) { // inner scope #1
 int tmp = capacity;
 ...
 this.capacity = tmp;
 }
 private IntConsumer resizer = (int capacity) -> {
 // inner scope #2
 int tmp = capacity;
 ...
 this.capacity = tmp;
 };
}

32 Lambda Expressions

The lambda expression declares local entities named tmp and capacity of its
own and uses the qualified name this.capacity if it needs a reference to the
enclosing class's entity.

The principle is always the same. If we have an outer scope (a class) and an inner
scope (a nested type, method, or lambda expression) and the outer and the inner
scope declare the same name, then both names denote separate entities. The
inner name shadows the outer name and we can distinguish between the entities
by using qualified names. The qualifier is either a type name (e.g.
Container.MAX_CAPACITY) or an expression (e.g. this.capacity).

Note, that a name declared in a class is visible in the entire class. Its declaration
can be placed before or after its use, i.e., the declaration of the name need not
precede its use.

Example of using a name before declaring the name:

class Sequence {
 public void resize(int capacity) {
 int tmp = capacity;
 ...
 this.capacity = tmp; // usage
 }
 private IntConsumer resizer = (int capacity) -> {
 int tmp = capacity;
 ...
 this.capacity = tmp; // usage
 };

 private int capacity = 0; // declaration
}

Names in a Method Scope

In this section we discuss name binding issues in scopes that are nested
into a method.

Since methods cannot be defined inside other methods, the only scopes
that can be nested into a method are local or anonymous inner classes and
lambda expressions.

We will look into the following situations:

 a class defined in a method
 a lambda expression defined in a method

shadowing - class nested into method

Lambda Expressions 33

Nested Scopes#4: A Class Nested into a Method

First, we consider classes that appear in the scope of a method. If both
the enclosing method and the local or anonymous inner class declare the
same name, then we have two entities with the same name in different
nested scopes. Like top level and nested classes, local and anonymous
classes are scopes.

Example of a local class nested into a method scope:

public void reverse_sort(Comparator arg) { // outer scope
 Comparator cmp = null;
 class ReverseComparator implements Comparator {
 // inner scope
 private Comparator cmp;
 public ReverseComparator() {
 cmp = arg;
 }
 public ReverseComparator(Comparator arg) {
 cmp = arg;
 }
 public int compare(Object lhs, Object rhs) {
 return cmp.compare(rhs,lhs);
 }
 }
 cmp = new ReverseComparator() ;
 ...
}

In the code snippet above the reverse_sort method declares a local variable
named cmp and the local class ReverseComparator defines a field named cmp.
Since the local class is a scope, we end up with two entities in two different scopes
that have the same name. Using its simple name in the inner scope shadows the
name in the outer scope. This time there is no qualification that would permit
reference to the outer entity from the inner scope. There is simply no qualifier for
a local variable such as the cmp variable in method reverse_sort.

The example above also illustrates name binding. The outer scope, i.e. the
reverse_sort method, declares a variable named arg. The no-argument
constructor of class ReverseComparator does not declare a variable named arg
of its own, but uses the name arg to refer the outer scope variable arg. Before
Java 8, this kind of name binding was only permitted if the outer scope variable
was declared as final. Since Java 8, the name binding is allowed without the
final declaration. The bound variable, however, must be effectively final, which
means that you need not explicitly declare it as final, but the compiler implicitly
treats it as final and issues error messages for every attempted modification.

34 Lambda Expressions

The other constructor of class ReverseComparator does declare a variable
named arg of its own. In this constructor the simple name arg refers to the local
variable arg and not to the outer scope variable arg. Here we have shadowing
instead of binding. (In practice, it is advisable to use different names in order to
avoid any confusion regarding the meaning of each name. We are using colliding
names in the example solely for the sake of illustration.)

In the example above we have been using a local class as the inner scope. The
same shadowing and binding occurs for anonymous inner classes. Here is the
same example with an anonymous instead of a local class.

Example of an anonymous class nested into a method scope:

public void reverse_sort(Comparator arg) { // outer scope
 Comparator cmp = null;
 cmp = new Comparator() { // inner scope
 private Comparator cmp;
 { // initializer
 cmp = arg;
 }
 public int compare(Object lhs, Object rhs) {
 return cmp.compare(rhs,lhs);
 }
 };
 ...
}

The name cmp declared in the anonymous inner class shadows the same
name declared in the enclosing method. The name arg is not declared in
the anonymous inner class and refers to the outer entity, which is
implicitly final. Note, in this version of the example the inner variable
named cmp can be eliminated; is it used solely for illustration.
shadowing - lambda expression nested into method

Nested Scopes#5: A Lambda Expression Nested into a Method

If we use lambda expressions inside a method we find that they are not
scopes of their own, different from local and anonymous inner classes.
Instead, a lambda expression is part of the scope in which it appears.
This is called lexical scoping and is discussed in the next section.
lexical scoping

Lambda Expressions 35

Lexical Scoping for Lambda Expressions

If a lambda expression is defined in a method and declares names that
already exist in the enclosing method, then the compiler issues an error
message. This is because a lambda expression is not a scope, but is part of
its enclosing scope. (This is called lexical scoping.)

Example of a lambda expression nested into a method scope:

public void reverse_sort(Comparator arg) { // outer scope
 Comparator cmp = null;
 cmp = (Object lhs, Object rhs) -> { // NO inner scope
 Comparator cmp; // error: name cmp already defined
 cmp = arg;
 return cmp.compare(rhs,lhs);
 }; ...
}

The example illustrates that the lambda expression is part of the method scope in
which it appears. When the name cmp is declared in the lambda expression the
compiler considers it an attempt to define a name that already exists in the current
scope and issues an according error message.

This is a fundamental difference compared to local and anonymous inner classes.
While classes are scopes of their own, lambda expressions are part of their
enclosing scope and do not define names of their own. Every name used
inside the lambda expression has the same meaning as in the enclosing
scope. This is one reason why lambdas in Java are called lambda expressions:
they are expressions (in contrast to classes or methods). Regarding scopes and
the meaning of names lambda expressions behave like expressions: they are part
of the enclosing scope and contribute to it.

The name binding works the same way as it does for local and anonymous inner
classes. If a name declared in the enclosing scope is used inside the lambda
expression then it refers to the outer entity. In the example, use of the name arg
in the lambda refers to the arg variable in the enclosing method scope.

Let us fix the error in the lambda expression above. We can use a name different
from cmp and thereby eliminate the name collision. Since the lambda expression
in our example does not even need the cmp variable we can drop it altogether.

Example identical to the one before, but without an error:

36 Lambda Expressions

public void reverse_sort(Comparator arg) { // outer scope
 Comparator cmp = null;
 cmp = (Object lhs, Object rhs) -> { // NO inner scope
 return arg.compare(rhs,lhs);
 };
 ...
}

Note, that a name declared in a method must be declared before its use. This is
different from the declaration of names in class scope. A name defined in a class
scope is visible in the entire class; it can be declared after is has been used. This is
not permitted for names in methods. A name declared in a method is visible
from its declaration until the end of the scope.

This means that a name defined in a lambda expression only collides with
identical names of the enclosing method if the colliding name has been declared
before it appears in the lambda. There is no collision if the name is declared after
the lambda.

Example that demonstrates the above:

public void reverse_sort(Comparator arg) {
 Comparator cmp = null;
 cmp = (Object lhs, Object rhs) -> {
 Comparator tmp = arg; // fine; no name collision
 return tmp.compare(rhs,lhs);
 };
 Comparator tmp = arg;
 cmp = (Object lhs, Object rhs) -> {
 Comparator tmp = arg; // error: name already defined
 return tmp.compare(rhs,lhs);
 };
 ...
}

When the first lambda declares the name tmp then there is no collision
because the enclosing method has not yet declared the name tmp. When
the second lambda declares the name tmp then the compiler complains
because at that point in the program text there is a variable named tmp
declared in the enclosing method that is in conflict with the lambda's
variable of the same name.
meaning of this/super

Lambda Expressions 37

The Meaning of this and super in Lambda Expressions

As explained before, lambda expressions are expressions and a name used inside
a lambda expression has the same meaning as in the enclosing scope. This is also
true for the keywords this and super.

Example of the meaning of this in a lambda expression:

class Sequence {
 public void reverse_sort(Comparator arg) {
 System.out.println(this.toString());
 // this denotes the sequence
 Comparator cmp = (Object lhs, Object rhs) -> {
 System.out.println(this.toString());
 // this denotes the sequence
 return arg.compare(rhs,lhs);
 };
 }
}

In the example, the comparator is provided as a lambda expression. The this
keyword has the same meaning inside and outside the lambda expression; in both
cases it refers to the sequence.

Example of the meaning of this in an anonymous inner class:

class Sequence {
 public void reverse_sort(Comparator arg) {
 System.out.println(this.toString());
 // this denotes the sequence
 Comparator cmp = new Comparator() {
 public int compare(Object lhs, Object rhs) {
 System.out.println(this.toString());
 // this denotes the comparator
 System.out.println(Sequence.this.toString());
 // this denotes the sequence
 return arg.compare(rhs,lhs);
 }
 };
 }
}

In the example, the comparator is provided as an anonymous inner class. When
the this keyword is used inside the inner class it now refers to the comparator

38 Lambda Expressions

instead of the sequence. In order to refer to the sequence from with the inner
class the qualified name Sequence.this must be used.

In analogy, the keyword super refers to the supertype of the enclosing type when
used in a lambda expression and to the supertype of the anonymous class when
used in an anonymous class.

Example of the meaning of super in a lambda expression:

class Sequence implements Cloneable {
 public Sequence clone() {
 Sequence copy = null;
 Supplier<Sequence> cloner;
 cloner = () -> {
 try {
 return (Sequence)super.clone();
 // super refers to supertype of Sequence
 } catch(CloneNotSupportedException e) {
 throw new InternalError(e);
 }
 };
 copy = cloner.get();

 return copy;
 }
}

Example of the meaning of super in an anonymous inner class:

class Sequence implements Cloneable {
 public Sequence clone() {
 Sequence copy = null;
 Supplier<Sequence> cloner;
 cloner = new Supplier<Sequence>() {
 public Sequence get() {
 try {
 // error: ClassCastException
 // super refers to supertype of anonymous Supplier
 return (Sequence)super.clone();
 } catch(CloneNotSupportedException e) {
 throw new InternalError(e);
 }
 }
 };
 copy = cloner.get();

 return copy;
 }

Lambda Expressions 39

}

When we need to refer to the supertype of the enclosing type a qualification is
needed, i.e., we must use Sequence.super instead of just super inside the
anonymous class.

Example, same as before with error eliminated:

class Sequence implements Cloneable {
 public Sequence clone() {
 Sequence copy = null;
 Supplier<Sequence> cloner;
 cloner = new Supplier<Sequence>() {
 public Sequence get() {
 try {
 return (Sequence)Sequence.super.clone(); // fine
 } catch(CloneNotSupportedException e) {
 throw new InternalError(e);
 }
 }
 };
 copy = cloner.get();

 return copy;
 }
}

binding to finals binding to primitive types

Binding Restricted to Implicitly Final Variables

A lambda expression can refer to variables of its enclosing scope. This
binding of a name used in the lambda to a local variable of the enclosing
scope requires that the respective variable is not modified. In order to
prevent modification, the outer variable can either be explicitly declared as
final, or the compiler implicitly treats is as effectively final. Why is this
restriction to final variables? Why can't a lambda refer to a non-final
local variable of the enclosing scope?

The reason is that bindings to local variables collide with the intuitive
understanding of local variables. Of a variable that is local to a method we expect
two things:

 The local variable has a lifetime from where it is defined until the end
of the method, and

 local variables are invisible to other threads and therefore will never
be subject to race conditions and are inherently thread-safe.

40 Lambda Expressions

Both properties vanish as soon as a lambda expression has a binding to a local
variable in the enclosing method. The lambda expression may outlive the
termination of the method, for instance if it is returned from the method or
assigned to a field. Along with the surviving lambda expression all bound local
variables would stay around long after exit from the method. In other words, a
local variable's lifetime would no longer be tied to the local context in which it
was defined.

Furthermore, the local variable might be accessed concurrently, if for instance the
local variable is bound to a lambda that is passed to another thread and executed
concurrently. This would introduce an entirely new category of race conditions,
namely race conditions for local variables - which traditionally have been thread-
safe because they are created on the stack and for this reason inaccessible to other
threads. Detecting and correctly handling race conditions is error-prone to begin
with and adding even more opportunities for race conditions adds to the
complexity of multi-threading.

The loss of the local variables' two expected properties - limited lifetime
and thread-safety - is acceptable if the local variables are immutable. If a
variable is never modified then there is no potential for race conditions; it
simply does not matter where and when the immutable value is read or
whether this read access happens sequentially or concurrently. For this
reason, the binding to local variable of the enclosing method is restricted
to immutable, i.e., final variables.

For illustration, let us study an example.

Example #1: Binding to a Local Variable of a Primitive Type

Example of a lambda expression with a binding to local variables of the enclosing
method:

Runnable[] makeTasks() {
 int cnt = 0;

 Runnable incrTask = () -> {
 while (true) {
 cnt++; // error: variable must be effectively final
 }
 };

 Runnable watchTask = () -> {
 do {
 // nothing
 } while(cnt < 100_000);
 System.out.println(Thread.currentThread().getName()
 +": stops at "+cnt);
 };

Lambda Expressions 41

 return new Runnable[] {watchTask,incrTask};
}

The local variable cnt is declared inside method makeTasks. The variable cnt is
used in the two lambda expressions that appear in the method. Both lambdas
implement the Runnable interface and will be executed asynchronously in
separate threads.

class Test {

 public static void main(String... args) {
 Runnable[] tasks = makeTasks();

 watchdog[i] = new Thread(tasks[0],"watchdog"i);
 incrementer[i]
 = new Thread(tasks[1],"incrementer"i);
 incrementer[i].setDaemon(true);

 watchdog[i].start();
 incrementer[i].start();
 }
}

If the lambdas run in different threads, there is concurrent access to the integral
value cnt declared locally in the makeTasks method. One of the accesses is a
modification, namely the attempted increment that the compiler rejects as an
error. Concurrent access to mutable data is error-prone. The example, for
instance, has a visibility problem. The watchdog thread might see a stale value of
cnt, e.g. the initial value 0, although the incrementer thread keeps incrementing
the cnt until overflow and beyond. Without proper precautions this tiny
program is incorrect.

Fortunately, the compiler refuses to compile the incorrect program. The
cnt variable must be effectively final and the compiler flags the
attempted increment as an error. If the cnt variable were indeed
(effectively) final, then all access in all lambdas would be non-mutating,
which is thread-safe and does not have visibility problems. Essentially,
the restriction to (effectively) final variables is a precaution in order to
prevent errors and to ease use of lambda expressions and name binding.
binding to reference

Example #2: Binding to a Local Variable of a Reference Type

In the case study above the local variable in question was of a primitive type,
namely an int variable. What happens if the local variable is of a reference type?

42 Lambda Expressions

References, too, must be effectively final if lambda expressions want to
bind to them. The required explicit or implicit final declaration on a
reference only affects the reference variable itself, but not the referenced
object. That is, we must not modify the bound reference variable, but we
may modify the referenced object. This perfectly makes sense.

The reference variable itself is placed on the stack of the method in which
it is local. Its lifetime is tied to the method. This is exactly the same as
for the primitive type local variable.

The referenced object, in contrast, is allocated on the heap and its lifetime is
independent of the method and instead tied to the fact whether the object is
reachable or unreachable. We also know that we are responsible to ensure thread-
safety if we make an object accessible to multiple threads.

The previously studied example could be re-written using a local reference
variable instead of a primitive type variable. We need a reference to a thread-safe
counter and for this purpose we use a LongAdder from package
java.util.concurrent.atomic.

Example of lambda expressions with bindings to a local reference variable of the
enclosing method:

Runnable[] makeTasks() {
 final LongAdder cnt = new LongAdder();

 Runnable incrTask = () -> {
 while (true) {
 cnt.increment();
 }
 };

 Runnable watchTask = () -> {
 do {
 // nothing
 } while(cnt.intValue() < 100_000);
 System.out.println(Thread.currentThread().getName()
 +": stops at "+cnt.intValue());
 };

 return new Runnable[] {watchTask,incrTask};
}

In this version the compiler no longer issues error messages, because the
reference variable cnt to which the lambda expression binds is final - as is

Lambda Expressions 43

required. The referenced LongAdder object is thread-safe and it is expressly
designed for efficient, concurrent modification.
array boxing hack

Example #3: Binding to a Local Variable of an Array Type

The fact that final references only prevent modification of the reference itself,
but permit modification of the referenced object allows for bugs and errors. The
example above is correct, because the reference refers to a thread-safe LongAdder
object. Using references it is easy to make mistakes and inadvertently use a
reference to a thread-unsafe object. Below is a version that demonstrates the
potential pitfall.

Incorrect example of lambda expressions with bindings to local reference
variables of the enclosing method:

Runnable[] makeTasks() {
 final int[] cnt = new int[] {0};

 Runnable incrTask = () -> {
 while (true) {
 cnt[0]++;
 }
 };

 Runnable watchTask = () -> {
 do {
 // nothing
 } while(cnt[0] < 100_000);
 System.out.println(Thread.currentThread().getName()
 +": stops at "+cnt[0]);
 };

 return new Runnable[] {watchTask,incrTask};
}

The counter is now a reference to an int-array of size 1 whose one and only
entry contains the actual count value. Since we are using a final reference to the
array, the compiler does not complain. Yet the example is incorrect. It has
serious visibility problems: there is no guarantee that the watchdog thread will see
the modifications produced by the incrementer thread.

The Array Boxing Hack

By the way, the above demonstrated approach is known as the so-called array
boxing hack. It might occasionally be useful if you need to work around the
"effectively final" restriction, which might be acceptable in single-threaded

44 Lambda Expressions

situations. Still, it is error-prone. Don't use the array boxing hack unless you fully
understand the implications of what you are doing.
effectively final

Effectively Final Variables in Inner Classes

Note that the lambda expressions' restricted binding to effectively final variables
of the enclosing scope is in line with the behaviour of anonymous and local inner
classes. Anonymous and local inner classes also may have bindings to local
variables of the enclosing scope. Traditionally, the binding was permitted only to
explicitly final variables of the enclosing scope; since Java 8 we can omit the
explicit final declaration and the compiler treats the bound variables as
effectively final. The reasoning for the restriction to effectively final local
variables is exactly the same as for lambda expressions.
binding to fields

No Restrictions for Bindings to Fields

In the previous section we discussed the binding of a name used in a
lambda to a locale variable of the lambda's enclosing scope. A lambda
expression can refer to other kinds of entities from enclosing scopes, e.g.
a lambda expression may refer to a field defined in the enclosing class.
The binding to a field of the enclosing class is not restricted to final or
effectively final fields.

Here is an example of a lambda expression with bindings to its enclosing
class's fields:
class UnrestrictedAccessToFields {
 private static int staticField = 0;
 private int nonStaticField = 0;

 public void demonstrate() {
 int localVariable = 0;
 new Thread(()-> {
 staticField++; // fine
 nonStaticField--; // fine
 localVariable++; // error: local variable must be final
 }).start();
 }
}

Inside the lambda expression the two fields are modified, which illustrates
that the fields are neither final nor effectively final.

Fields and local variables are treated differently because they have
different lifetime. As explained earlier (see section "Binding Restricted to
Implicitly Final Variables") the reason for the "effectively final"
restriction is the local variables' short lifetime.

Lambda Expressions 45

The lifetime of a local variable is tied to the execution of the method in
which it is defined, whereas the lambda itself might live longer. It must
be prevented that a lambda expression defined in a method modifies local
variables. For this reason, it can only bind to effectively final local
variables.

The lifetime of a class's field, in contrast, exceeds the execution of the
class's methods. There is no need to prevent that a lambda defined in a
method modifies the class's fields. Hence the lambda can also bind to
non-final fields and modify them.

Wrap-up

Names declared and used in a lambda expression are treated differently from
names declared in a method or local or anonymous inner class.

 Declared names.

A name declared in a lambda expression contributes to the lambda's
enclosing context and collides with the same name declared in the
lambda's enclosing context.

In contrast, a name declared in a method or local or anonymous inner class is an
entity of its own and shadows corresponding names in the enclosing scope.

Used, but not declared names.

A name used, but not declared in a lambda expression has the same
meaning that it has in the lambda's enclosing context. The binding to
local variables of the enclosing scope is only permitted for effectively final
variables. The binding to fields of the enclosing class is not restricted to
final fields.

The same holds for a name used, but not declared in a method or
local or anonymous inner class.

this and super.

In a method or lambda expression this and super refer to an instance
of the enclosing class type (or its superclass part).

In contrast, in local or anonymous inner classes this and super refer
to an instance of the inner class type (or its superclass part).

46 Lambda Expressions

The Meaning of Jumps and Exits

In the previous section we learnt that names in a lambda expression have the
same meaning as they have in the enclosing context. This bears the question
whether keywords such as break, continue, return, and throws also have the
same meaning that they would have in the enclosing context. This, however, is
not true.

Keywords such as break, continue, return, and throw have the same meaning
in a lambda expression that they have in a method. For instance, a return
statement in a method triggers exit from the method. So does a return
statement in a lambda expression: it triggers exit from the lambda expression.
Keywords such as break, continue, return, and throw affect only the lambda
expression, but never the enclosing method.

It was discussed during the design of lambdas whether so-called non-local
jumps should be allowed, but eventually it was decided that there will be no
support for non-local jumps in Java 8.
break / continue

Local vs. Non-Local Jumps

In Java, the keyword break is only allowed in loops or switch statements and the
keyword continue can only be used in loops. They permit jumps out of the
loop or switch statement (break) or to the end of the loop body (continue).
These rules hold for both methods and lambda expression. There is no
difference.

For instance, if a lambda expression's body contains a loop, then we can break
out of the loop using the break statement.
Consumer<int[]> reader = array -> {
 for (int i : array) {
 if (i < 0)
 break; // fine
 ...
 }
};

 Non-local jumps are not supported in Java, i.e. a break or continue statement in a
lambda expression does not affect the lambda's enclosing context.

Example of an illegal break statement in a lambda expression:
void test(String... args) {
 IntConsumer reporter = i -> {
 System.err.println("illegal argument size "+i);
 break; // error: break outside switch or loop
 };

 for (String s : args) {

Lambda Expressions 47

 if (s.length() == 0) {
 reporter.accept(0);
 }
 ...
 }
}

A break statement is only allowed in a loop or switch statement. Since the
lambda body does not contain a loop, the compiler issues an error message. As a
result there is no way that a jump statement in a lambda expression has any effect
on the control flow of its enclosing method.

The example above can be fixed by placing the break statement in the enclosing
method rather than the lambda.

Example, same as above, but non-local jump eliminated:
void test(String... args) {
 IntConsumer reporter = i -> {
 System.err.println("illegal argument size "+i);
 };
 for (String s : args) {
 if (s.length() == 0) {
 reporter.accept(0);
 break; // fine
 }
 ...
 }
}

Now, the break statement appears in the loop of the enclosing method, which is
permitted and fine.
return / throw

Return and Throw Statements in Lambda Expressions

The statements return and throw terminate the lambda expression in which they
appear, but never cause exit from the enclosing method.

Example of return in a lambda expression:
void test(String... args) {
 IntConsumer reporter = i -> {
 System.err.println("illegal argument size "+i);
 return; // terminates the lambda
 };

 for (String s : args) {
 if (s.length() == 0) {
 reporter.accept(0);
 }
 ...
 }
}

48 Lambda Expressions

A return statement in a lambda expression triggers exit from the lambda body.
It does not mean that the enclosing method terminates. In the example above,
the return statement would end the lambda body, but not the test method.

If we want to end the test method we need to add a return statement to the
method rather than the lambda.

Example, same as above, but with return in enclosing method:
void test(String... args) {
 IntConsumer reporter = i -> {
 System.err.println("illegal argument size "+i);
 };
 for (String s : args) {
 if (s.length() == 0) {
 reporter.accept(0);
 return; // terminates the test method
 }
 ...
 }
}

Now, the return statement appears in the enclosing method and terminates it.

The lambda expression can, of course, contain return statements for termination
of the lambda body and/or passing back return values. The use of the return
statement in a lambda expression is exactly the same as in methods.
Function<String,String> extractor = s -> {
 if (s.charAt(0) == '+' || s.charAt(0) == '-')
 return s.substring(1, s.length());
 else
 return s;
};

If there are multiple return statements in a lambda body, the types of the
returned values may differ. The compiler looks for a common supertype of all
return values and deduces the common supertype as the lambda expression's
return type.

The rules throw statements are similar. A throw statement terminates the
lambda expression (with an exception instead of a return value) and does
not have any immediate effect on the enclosing method. If the enclosing
method does not catch the exception thrown by the lambda, then the
enclosing method also terminates with an exception. But this is due to the
rules for exception propagation and handling and has nothing to do with
lambdas. The effect of a throw statement in a lambda expression is exactly
the same as in a method.

Lambda Expressions 49

recursive lambdas

Recursive Lambda Expressions

Occasionally, one might need a function that recursively invokes itself.
This can easily be achieved by means of anonymous inner classes. Here
is an example of such a recursive function:
File[] findFiles(String dirname) {
 final File myDir = new File(dirname);

 if (myDir.isDirectory()) {
 final List<File> files = new ArrayList<>();
 final FileFilter filter = new FileFilter() {
 public boolean accept(File f) {
 if (f.isDirectory()) {
 files.addAll(Arrays.asList
 (f.listFiles(this)));
 return false;
 } else {
 return f.isFile();
 }
 }
 };
 files.addAll(Arrays.asList(myDir.listFiles(filter)));
 return files.toArray(new File[files.size()]);
 } else {
 return null;
 }
}

In this example, the listFiles method is invoked for a directory. The file filter
passed to the listFiles method returns true for each file in the directory and
false for each directory in the directory. It addition, for each directory in the
directory the listFiles method is invoked with the same file filter. This way, all
files in all directories are recursively collected in a list and eventually returned.

This is a situation where the file filter uses itself recursively in its own
implementation. This is possible because the file filter is provided as an instance
of an anonymous inner class. In the body of the class's accept method the file
filter refers to itself via the this keyword. The file filter does so in order to pass
itself to the listFiles method as the required file filter.

No such recursive use is possible with lambda expressions. Here is an attempt of
such a recursive lambda expression. Note that it does not compile.
File[] findFiles(String dirname) {
 final File myDir = new File(dirname);

 if (myDir.isDirectory()) {
 final List<File> files = new ArrayList<>();
 final FileFilter filter = (File f) -> {
 if (f.isDirectory()) {

50 Lambda Expressions

 files.addAll(Arrays.asList(f.listFiles(filter)));
 // error: not yet initialized
 return false;
 } else {
 return f.isFile();
 }
 };
 files.addAll(Arrays.asList(myDir.listFiles(filter)));
 return files.toArray(new File[files.size()]);
 } else {
 return null;
 }
}

Due to lexical scoping, we cannot refer to the lambda expression inside the
lambda expression's body via the this keyword. The this keyword does not
refer to the lambda expression, but is the this reference of the enclosing context.

Our only chance to refer to the lambda inside the lambda is via a named variable.
In this case we attempt to use the filter variable for this purpose. The filter
variable is a local variable and all local variables must be initialized before their first
use. When we use the filter variable in the definition of the lambda expression,
the compiler rejects this use because the filter variable has not yet been
initialized.

It means that recursive use of lambda expressions is not supported and
anonymous inner classes must be used instead.
generic lambdas

Generic Lambda Expressions Not Permitted

Generic lambda expressions are not permitted in Java and they are a corner case.
This section explains under which circumstances you might miss the feature and
how you can cope. It is likely that you will never need a generic lambda
expression. Feel free to skip the section if you are not interested in exotic, rarely
encountered issues.

When would we need a generic lambda expression?

Consider a functional interface whose single abstract method is generic: If you
wanted to provide an implementation for the abstract method by means of a
lambda expression the lambda expression would have to be generic, too. As
already mentioned, no such thing as a generic lambda expression exists. There is
no syntax for specifying type parameters for a lambda expression.

Let us explore an example of a functional interface with a generic abstract
method:
interface Factory {
 <T> Generic<T> make();

Lambda Expressions 51

}

It uses a generic class Generic:
class Generic<X> {
 ...
}

The following lambda expressions are illegal:

Factory f1 = ()->new Generic<>(); // error: lambda is not generic
Factory f2 = ()->new Generic<?>(); // error: illegal construction
Factory f3 = ()->new Generic<Long>();// error: lambda is not generic

The lambda expressions are illegal because they all boil down to a non-generic
method that takes no arguments, does not throw exceptions, and returns an
object of a parameterization of the generic class Generic. The left-hand side of
the assignment, in contrast, requires a function that is generic and takes no
arguments, does not throw, and returns a parameterization of Generic. The
lambdas expressions almost match - except that they do not have a type
parameter.

You might want to try something like this in order to specify a type parameter for
the lambda expression, but the syntax does not exist:

Factory f4 = <T>()->new Generic<T>();// error: illegal syntax

Ultimately, there is no way to specify type parameters for lambda expressions.
Lambda expressions are always non-generic.

How do we cope with the lack of generic lambda expressions?

Instead of a lambda expression we can use a method reference or an anonymous
inner class.

Here is a solution using an anonymous inner class:
Factory f5 = new Factory() {
 public <T> Generic<T> make() { return new Generic<T>(); }
};

Implementing the functional interface by means of an anonymous inner
class is no problem at all. Just define the required make method as a
generic method.

Here is a solution using a constructor reference:
Factory f6 = Generic::new;

The expression Generic::new is a constructor reference. Since Generic is a generic class its constructor can serve as a generic function.
Method and constructor references are explained in the subsequent section on "method / constructor references

Method and Constructor References".

52 Lambda Expressions

Method and Constructor References 53

method / constructor references

Method and Constructor References
Along with lambda expressions, method references and constructor references were added
to the language in Java 8. A method or constructor reference refers to a method
or constructor without invoking it. They are a syntactic shortcut for creating a
lambda expression out of an existing method/constructor.

Consider a lambda expression that is used as file filter in the listFiles method
of class java.io.File:
File[] files = myDir.listFiles(
 (File f) -> { return f.isFile(); }
);

It takes a reference to a File object, calls its isFile method, and returns the
method's result.

With a method reference we can simply say: use the isFile method. It looks like
this:
File[] files = myDir.listFiles(File::isFile);

In the example File::isFile denotes a reference to a non-static method. There
are also references to static methods (e.g. System::gc) and reference to
constructors (e.g. ArrayList::new).

Method and constructor references consist of a qualifier, the :: symbol, and a
method name. Let us begin with a simplified version of the syntax of method
and constructor references. The actual syntax production in the Java language
specification is more complex and detailed: We will address some of the details
later.

Here is a simplified version of the syntax:
ConstructorReference:
 TypeName '::' 'new'

MethodReference:
 Expression '::' Identifier
 TypeName '::' Identifier

For a constructor reference the qualifier is the name of a type. The new keyword
serves as the name of the referenced constructor. The qualifier type must allow
instance creation, e.g. it cannot be the name of an abstract class or an interface,
because no objects of an abstract class or interface type can be created.

54 Method and Constructor References

For a method reference the qualifier can be a type or an expression. The
identifier is the name of the referenced method. An expression can only be used
as the qualifier for non-static methods; the expression then is the object on which
the method is invoked. Static methods are always referenced with a type name as
the qualifier.

In the following we take a closer look at references to the various types of
methods:

 constructors
 static methods
 non-static methods
constructor references

Reference to Constructor

References to constructors have the form:
ConstructorReference:
 ClassType '::' NonWildTypeArgumentsopt 'new'
 ArrayType '::' 'new'

where new is the name of the constructor and the qualifier is either a ClassType
or an ArrayType. The class type must be a type that permits creation of
instances. It can not be the name of an abstract class, an interface, or of an
enumeration type. All of these types do not permit creation of objects.

The optional NonWildTypeArguments are for the explicit specification of the type
arguments of a generic constructor. This is needed for the rare cases in which the
compiler cannot automatically infer the type arguments.

Here are examples of references to constructors:

reference to constructor equivalent lambda expression

String::new () -> new String()

or
(String s) -> new String(s)

or
(value, offset, count)

 -> new String

 (value,offset,count)

ArrayList<String>::new ()

-> new ArrayList<String>()

Method and Constructor References 55

String[]::new size -> new String[size]

int[]::new (int size)

 -> new int[size]

Outer.StaticInner::new ()

-> new Outer.StaticInner()

Outer.NonStaticInner::new (Outer outer)

-> outer.new

 NonStaticInner()

Tuple<Number>::<Long>new (Tuple<Long> pair)

-> new Tuple<Number>(pair)

Here is an example that illustrates the use of constructor reference. We
have stream of floating point values and want to store the values in a list.
Stream<Double> doubles = …
Collector<Double,?,LinkedList<Double>> listCollector
 = Collectors.toCollection(LinkedList<Double>::new);
LinkedList<Double> list = doubles.collect(listCollector);

The example uses abstractions from the JDK package java.util.stream.
The Stream interface describes a sequence of elements; in our example the
element are floating point values of type Double. The Stream interface has
a collect method that stores the stream's elements in a data store. A data
store can for instance be a collection; in our example we want to use a
LinkedList<Double> as the data store. The collect method needs a
collector that knows how to create the data store. For creating collectors
there is a helper class named Collectors; it has a toCollection factory
method. It needs a Supplier that eventually provides the collection. In
our example the supplier is the constructor of class LinkedList<Double>.,
denoted via the constructor reference LinkedList<Double>::new.
reference to overloaded constructor

There is no support for specifying a particular signature to be matched,
like for instance String::new(), String::new(String),
String::new(StringBuilder), String::new(StringBuffer), or
String::new(char[], int, int). When the constructor is overloaded, i.e.
if there is more than one constructor, the appropriate constructor is
selected based on the type inference context.

Here is an example that refers to two overloaded constructors of class
String, namely String(StringBuilder) and String(StringBuffer):
Stream<StringBuilder> builders = …
Stream<String> strings = builders.map(String::new);

56 Method and Constructor References

Stream<StringBuffer> buffers = …
Stream<String> strings = buffers.map(String::new);

The compiler picks the right constructor depending on the context in
which the constructor reference appears.
reference to generic constructor

Similarly, the meaning of a reference to a generic constructor depends on
the context. Consider the following generic class with a generic
constructor:
class Tuple<A> {
 private A fst, snd;
 public <X extends A> Tuple(Tuple<X> other) {
 fst = other.fst;
 snd = other.snd;
 }
}

The constructor reference Tuple::new can refer to various parameterizations
such as Tuple<String>::<String>new, Tuple<Number>::<Long>new, or
Tuple<Object>::<Date>new. The compiler selects the appropriate
parameterization for each given context.

Here are some examples of a context in which the constructor reference
Tuple::new appears:
Function<Tuple<String>,Tuple<String>> ctorRef
 = Tuple::new; // refers to Tuple<String>::<String>new
Function<Tuple<Long>,Tuple<Number>> ctorRef
 = Tuple::new; // refers to Tuple<Number>::<Long>new
Function<Tuple<Date>,Tuple<Object>> ctorRef
 = Tuple::new; // refers to Tuple<Object>::<Date>new

where Function is the functional interface java.util.function.Function:
@FunctionalInterface
public interface Function<T, R> {
 public R apply(T t);
}

Here is an example that uses references to different parameterizations of
the generic Tuple constructor:
Stream<Tuple<Number>> numbers = …
Stream<Tuple<String>> strings = …
Stream<Tuple<Object>> objects =
Stream.concat(numbers.map(Tuple::new),strings.map(Tuple::new));

Method and Constructor References 57

The concat method of interface Stream concates two sequences. It requires two
arguments, both of which must be streams of the exact same type. In the
example above we have two streams of different type, namely a
Stream<Tuple<Number>> and a Stream<Tuple<String>> and we intend to
concatenate them to a Stream<Tuple<Object>>. In order to produce a stream
of object tuples the concat method needs two streams of object tuples and we
must convert the two input streams to the required type before we can pass them
to the concat method. We achieve the conversion by mapping the number and
string tuples to object tuples; as a mapping functions we use the constructors
Tuple<Object>::<Number>new and Tuple<Object>:: <String>new. As the
context provides enough information for type inference, we can denote both
constructors as Tuple::new; the compiler does the rest and automatically infers
the omitted type parameters.

A detailed discussion of the process of selecting an appropriate signature (in case
of overloading) or an appropriate parameterization (in case of generics) is given
later in the section on "Target Typing".
reference to static method

Reference to Static Method

References to static methods have the form:
MethodReference:
 ReferenceType '::' NonWildTypeArgumentsopt Identifier

where Identifier is the name of the static method and ReferenceType is the
name of method's declaring type. The optional NonWildTypeArguments are for
the explicit specification of the type arguments of a generic method. This is
needed for the rare cases in which the compiler cannot automatically infer the
type arguments.

Here are examples of references to static methods:

reference to static method equivalent lambda expression

String::format (String fmt, Object... args)

-> String.format(fmt,args)

System::currentTimeMillis ()

 -> System

 .currentTimeMillis()

Arrays::toString Array

 -> Arrays.toString(array)

58 Method and Constructor References

Arrays::asList Array

 -> Arrays.asList(array)

Arrays::<String>asList (String[] array)

 -> Arrays.asList(array)

or
Array

 -> Arrays

 .<String>asList(array)

TimeUnit::values () -> TimeUnit.values()

Enum::valueOf (type,name)

 -> Enum.valueOf(type,name)

TimeUnit::valueOf (type,name)

 -> TimeUnit.valueOf

 (type,name)

or
(Class<TimeUnit> type,

 String name)

-> { return TimeUnit

 .valueOf(type,name);

 }

T::valueOf

(for type parameter T extends
Enum<T>)

(Class<T> t, String s)

 -> T.valueOf(t, s)

Collections::sort List

 -> Collections.sort(list)

or
(list ,comparator)

 -> Collections.sort

 (list,comparator)

Here is an example that uses references to static methods:
String s = DoubleStream.of(1, 2, 3)
 .map(Math::log)
 .mapToObj(Double::toString)

Method and Constructor References 59

 .collect(Collectors.joining(", "));

It produces the following string:
0.0, 0.6931471805599453, 1.0986122886681098

We create a stream of three floating point values, map them to their logarithms
using the static log method from class Math, map the logarithms to strings using
the static toString method from class Double, and eventually concatenate the
strings to a single string using a string collector with delimiters.

When a static method is overloaded, i.e. if there is more than one method with
the same name, the appropriate method is selected based on the type inference
context. For instance, class Collections has two static methods named sort
one that takes a list and another one that takes a list plus a comparator. Which
one is referenced via the method reference Collections::sort depends on the
context.

Similarly, the meaning of a reference to a generic method depends on the context.
For example, the method reference Arrays::asList can refer to various
parameterizations such as Arrays::<String>asList, Arrays::<Date>asList, or
Arrays::<Long>asList. The compiler selects the appropriate parameterization
for each given context.

Here is an example that uses a reference to a generic static method:
Map<Class<? extends Enum<?>>,List<Enum<?>>>
 getValueMap(Class<? extends Enum<?>>... enumTypes) {

 Map<Class<? extends Enum<?>>,List<Enum<?>>> values
 = new HashMap<>();

 for (Class<? extends Enum<?>> enumType : enumTypes) {
 Function<Class<? extends Enum<?>>,Enum<?>[]> getEnumConstants
 = c -> c.getEnumConstants();
 Function<Enum<?>[],List<Enum<?>>> convertToList
 = Arrays::asList;
 values.computeIfAbsent(enumType,
 getEnumConstants.andThen(convertToList));
 }
 return values;
}

In this example we create a map that associates an enum type with the list of the
enum constants for the respective enum type. The map is populated using the
computeIfAbsent method from interface Map. It takes a mapping function that
computes the associated values for a given key. In our example the mapping
function must compute a list of enum constants for each enum type. We provide
the mapper function by composing two functions: the first function

60 Method and Constructor References

(getEnumConstants) retrieves all enum constants for the enum type and returns
them as an array; the second function (convertToList) turns the array into a list.
The composition is achieved via the andThen method of interface Function.
The second function in the composition is denoted by a reference to the static
generic method asList from class Arrays. Its type parameter, which would be
Enum<?> in our example, is automatically deduced by the compiler.
reference to non-static method

Reference to Non-Static Method

If we want to invoke a non-static method we need an object on which the non-
static method can be invoked. This target object is the so-called receiver. We can
provide the receiver explicitly (as an expression) or we can supply it implicitly, i.e.,
later when the method is invoked.

Accordingly, references to non-static methods have the form:
MethodReference:
 Expression '::' NonWildTypeArgumentsopt Identifier
 ReferenceType '::' NonWildTypeArgumentsopt Identifier

where Identifier is the name of the non-static method and ReferenceType is
the name of method's declaring type. Details will be discussed in the subsequent
sections; we will discuss which of the two forms (with or without a receiver) is
best used in which situation.

The optional NonWildTypeArguments are for the explicit specification of the type
arguments of a generic method. This is needed for the rare cases in which the
compiler cannot automatically infer the type arguments.

Unbound Receiver

An example of a reference to a non-static method with an unbound receiver is
String::length. The length method as such is a non-static method defined in
class String; it takes no argument and returns an int value.

The method itself is not to be confused with the method reference
String::length. A reference to a non-static method always needs a receiver
object. The receiver object in the example of String::length is a String object
that is used when the length method is invoked via the method reference.
Obviously, the method reference String::length does not specifiy any
particular string object as the receiver. This is why we talk of an unbound receiver.

If the receiver is not specified as part of the method reference, it must be supplied
later when the method is called. As a consequence the method reference
String::length does not denote a method that takes no argument and returns
an int value, as one might believe when looking at the length method's

Method and Constructor References 61

signature. Instead the method reference String::length denotes a method that
takes one argument of type String, namely the receiver object, and returns an
int value. In other words, the method reference String::length has the
signature (String) -> int because it is equivalent to the lambda expression
(String s) -> { return s.length(); }.

This might be slightly confusing at first sight. So, take a mental note of the fact
that method references to non-static method with an unbound receiver always
take an additional first argument, namely the receiver.

Here is an example that illustrates the use of the method reference
String::length:

static double averageStringLength(String... strings) {
 return Arrays.stream(strings)
 .mapToInt(String::length)
 .average()
 .getAsDouble();
}

For a stream of strings its elements (the strings) are mapped to integer values
(their string length), the average is calculated and returned. As a mapper the
method reference String::length is used, which demonstrates that
String::length is a function that takes a String and returns an int.

Here are further examples of references to non-static methods with an unbound
receiver.

reference to unbound non-
static method

equivalent lambda expression

String::length (String s) -> s.length()

List::equals (lhs, rhs)
 -> lhs.equals(rhs)

List<Long>::equals (List<Long> lhs,
 Object rhs)
 -> lhs.equals(rhs)

Logger::log (Logger logg, Level sev, String
msg)
 -> logg.log(sev,msg)

int[]::clone (int[] a) -> a.clone()

62 Method and Constructor References

Collection::toArray c -> c.toArray()

or
(Collection<?> c)
 -> c.toArray()

or
(Collection<String> c)
 -> c.toArray()

Collection::toArray

or
Collection<Number>
::toArray

or
Collection
::<Long>toArray

or
Collection<Number>
::<Long>toArray

(Collection<Number> c, Long[] a)
 -> c.toArray(a)

T::ordinal

(for type parameter T extends
Enum<T>)

(T t) -> t.ordinal()

Outer.Inner::innerMethod (Outer.Inner inner)
 -> inner.innerMethod()

Thread
.UncaughtExceptionHandler
::uncaughtException

(h, t, e)
-> h.uncaughtException(t,e)

or
(Thread.UncaughtExceptionHandler h
,Thread t
,Throwable e)
-> h.uncaughtException(t,e)

Here is another example in which a reference to a non-static method with
unbound receiver is used:
static <T> Class<?>[] whichTypes(T[] array) {
 return Arrays.stream(array)
 .map(T::getClass)
 .collect(Collectors.toSet())
 .toArray(new Class<?>[0]);
}

Method and Constructor References 63

All elements in a stream of objects of unknown type T are mapped to their
types, i.e., their corresponding Class objects. The types are collected to a
set, which is eventually converted to an array. As a mapper function the
method reference T::getClass is used. As already pointed our earlier, the
non-static method getClass takes no arguments, but the method
reference T::getClass does take an argument. Since the method
reference T::getClass does not specify the receiver object, it denotes a
function that takes an object of unknown type T (the receiver) and returns
its type (as a Class object).

Bound Receiver

In the previous section we used references to non-static methods where the
receiver was not specified. Naturally, we can choose to provide a particular
receiver object as part of the method reference. In this case we talk of a bound
receiver.

An example of a reference to a non-static method with a bound receiver is
System.out::println. If refers to the println method of class PrintStream
and specifies that the println method will be applied to a particular receiver
object, namely the standard output stream System.out. The method reference
System.out::println has the signature (Object)->void and is equivalent to
the lambda expressions (Object o) -> System.out.println(o).

The method reference System.out::println is frequently used for debugging
purposes like in the following code snippet:
static List<String> findStringIn(String match, String[] strings){
 return Arrays.stream(strings)
 .peek(System.out::println)
 .filter(s->match.equals(s))
 .peek(System.out::println)
 .collect(Collectors.toList());
}

A filter is applied to an array of string. Via the peek operation the strings are
printed to System.out before and after filtering in order to check whether the
filter has the expected effect.

Each time we want to specify the receiver explicitly, we must use an expression
that refers to the receiver. In the example above the expression in question was
System.out. More generally, the expression is of the form:
Expression:
 ExpressionName
 Primary
 'super'
 TypeName '.' 'super'

64 Method and Constructor References

Here are further examples of references to non-static methods, where the receiver
is explicitly specified:

reference to unbound non-
static method

equivalent lambda expression

Thread
.currentThread()
.getName()::length

()
-> Thread.currentThread()
 .getName().length()

"xyz"::length () -> "xyz".length()

this::equals other -> this.equals(other)

super::equals other -> super.equals(other)

Logger
.getLogger("global")::log

(Level sev, String msg)
-> Logger.getLogger("global")
 .log(sev,msg

new int[] {1,2}::clone () -> new int[] {1,2}.clone()

new Thread()::start () -> new Thread().start()

new
Thread(Framework::test)
::start

()
-> new Thread(
 ()->Framework.test()
).start()

Arrays.asList(1L,2L,3L)
::toArray

or
Arrays.asList(1,2,3)
::<Long>toArray

a
-> Arrays.asList(1L,2L,3L)
 .toArray(a)

or
a
-> Arrays.asList(1,2,3)
 .<Long>toArray(a)

or
(Long[] a)
-> Arrays.asList(1,2,3)
 .toArray(a)

Outer.this::outerMethod () -> Outer.this.outerMethod()

Outer.super::hashCode () -> Outer.super.hashCode()

Method and Constructor References 65

Let us consider another example of a reference to a non-static method
with a bound receiver:
static List<String> findStringIn(String match, String[] strings){
 return Arrays.stream(strings)
 .filter(match::equals)
 .collect(Collectors.toList());
}

All strings from an input array (strings) are compared to a given string
(match); all matching strings are collected in a result list, which is returned.
As a filter the method reference match::equals is used. It refers to the
equals method of class String; the equals method is called on the
receiver object match. The method reference match::equals is equivalent
to the lambda expression (String s) -> { return match.equals(s); }.
The net effect of filtering with the predicate match::equals is that every
string in the input stream is compared to the string object match.

Method References in Action

Here is a final, more complex example that shows method references in
action. Feel free to skip it if you have seen enough of method references
for now. The example illustrates how conveniently method references
solve various problems, but it also points out certain limitations of
method references.

In the example we try to gather the ids of all runnable threads in an
application:
static Set<Long> findRunnableThreads() {
 Function<ThreadInfo,Thread.State>
 first = ThreadInfo::getThreadState;
 Function<Thread.State,Boolean>
 second = Thread.State.RUNNABLE::equals;
 Function<ThreadInfo,Boolean>
 isRunnableFunction = first.andThen(second);
 Predicate<ThreadInfo>
 isRunnablePredicate = isRunnableFunction::apply;

 return Arrays.stream(
 ManagementFactory.getThreadMXBean().dumpAllThreads(true,true)
).filter(isRunnablePredicate)
 .map(ThreadInfo::getThreadId)
 .collect(Collectors.toSet());
}

First, an array of ThreadInfo objects for all live threads is retrieved (via the
ThreadMxBean's dumpAllThread method). Through a filter
(isRunnablePredicate) all runnable threads are selected, mapped to their
thread ids, and the thread ids eventually stored in a set.

66 Method and Constructor References

The predicate isRunnablePredicate takes a ThreadInfo object, retrieves
the corresponding thread state (via ThreadInfo::getThreadState),
compares the thread state to the runnable state (via RUNNABLE::equals),
and returns the resulting boolean value. The predicate
isRunnablePredicate is essentially composed (via andThen) from the two
functions ThreadInfo::getThreadState and RUNNABLE::equals.

An additional complication stems from the fact that the result of
combining two functions via the andThen method is again a function, and
not a predicate. More precisely, the composed function returned from
andThen is of type Function<ThreadInfo, Boolean>, while we need a
predicate of type Predicate<ThreadInfo>, which we can pass it to the
stream's filter operation. The only difference between a
Function<ThreadInfo, Boolean> and a Predicate<ThreadInfo> is that the
function has an apply method that returns a Boolean whereas the
predicate has a test method that returns a boolean. The conversion
problem is easily solved by passing the method reference
isRunnableFunction::apply to the stream's filter operation instead of the
isRunnableFunction itself. When the apply method is invoked, it returns
a Boolean value, which is auto-unboxed to a boolean value, which matches
the required return type of the predicate's test method - e voilà - the
conversion problem is solved.

By the way, the entire example can equally well be expressed without
method reference, for instance like this:
static Set<Long> findRunnableThreads() {
 Predicate<ThreadInfo> isRunnablePredicate
 = info -> info.getThreadState().equals(Thread.State.RUNNABLE);

 return Arrays.stream(
 ManagementFactory.getThreadMXBean().dumpAllThreads(true,true)
).filter(isRunnablePredicate)
 .map(ThreadInfo::getThreadId)
 .collect(Collectors.toSet());
}

You might wonder why the isRunnablePrediate is more compactly
expressed via a lambda expression compared to the rather lengthy
composition of method references we have seen earlier. In principle we
can condense the combination of method reference to a more compact
notation. Let us try it.

Original composition using method references:
Function<ThreadInfo,Thread.State>
first = ThreadInfo::getThreadState;
Function<Thread.State,Boolean>
second = Thread.State.RUNNABLE::equals;
Function<ThreadInfo,Boolean>

Method and Constructor References 67

isRunnableFunction = first.andThen(second);
Predicate<ThreadInfo>
isRunnablePredicate = isRunnableFunction::apply;

An attempted compaction:
Predicate<ThreadInfo> isRunnablePredicate
= ThreadInfo::getThreadState // error
 .andThen(Thread.State.RUNNABLE::equals)
 ::apply;

The elegant use of a lambda expression:
Predicate<ThreadInfo> isRunnablePredicate
= info -> info.getThreadState().equals(Thread.State.RUNNABLE);

Our attempted compaction is rejected by the compiler with the error
message "method reference not expected here". This stems from the fact
that a method invocation context is not permitted as a type inference
context. The section on "Target Typing" discusses type inference in
detail. For the time being, suffice to say that we would have to insert a
cast in order to make it compile. Then it looks like this:

The attempted compaction, now fixed:
Predicate<ThreadInfo> isRunnablePredicate
= ((Function<ThreadInfo,Thread.State>)ThreadInfo::getThreadState)
 .andThen(Thread.State.RUNNABLE::equals)
 ::apply;

Either way, the solution using a lambda expression is probably the most
readable solution.

Bottom Line: Method References vs. Lambda Expressions

Method references provide a compact and readable notation for functions
that look more complex when denoted by an equivalent lambda
expression. You have seen many such examples in the tables throughout
this section. The key reason for their readability and compactness is that
the compiler infers practically everything for a method references (details
of type inference are covered in the section on "Target Typing").

On the other hand, a limitation of method references is that they are not
expected in front of the method selection symbol '.' in method calls.
This complicates their composition via operations such as and, or, negate
(from interface Predicate), compose, andThen (from interface Function),
and chain (from interface Consumer).

68 Functional Interfaces

Functional Interfaces
functional interface

Functional interfaces are a special category of interfaces. They are used in
conjunction with the type deduction for lambda expressions and
method/constructor references.

When lambda expressions and method/constructor references were
added to the Java programming language, the language designers tried to
keep matters simple and to avoid major modifications of the language and
its type system. At the same time they had to add an entirely new concept
to the language, namely the concept of "functions". Conceptually, both
lambda expressions and method/constructor references express
functions. The most natural approach for adding such a new concept
would have been to extend Java's type system and invent a new category
of types, namely "function types" that describes functions and their
signatures. A function type could have looked like (int)->void for a
function that takes int and returns void, for instance. The language
designers decided against such a major addition to the language's type
system. Instead, the looked for a way to integrate lambda expressions and
method/constructor references into the language without inventing new
types or type categories.

The solution they came up with are functional interface types and a type
inference process called target typing that figures out a matching functional
interface type for each lambda expression or method/constructor
reference. Both functional interfaces and target typing did already exist in
Java before lambda expressions and method/constructor references had
been invented.

The term "functional interface" is just a fancy name for an interface with
one abstract method. Interfaces with one method did exist in Java all
along. Examples are Runnable, Callable, and Comparable.

The "target type", too, is a familiar concept in Java. When an expression
appears in a context, its type must be compatible with a type expected in
that context. The expected type is called the target type. For lambda
expressions and method/constructor references the target type is inferred
by the compiler and must be a functional interface type.

In the following we explore functional interfaces in further detail. The
process of target type deduction is explained later in the section on
"Target Typing".
definition of functional interface

Functional Interfaces 69

Definition

A functional interface is an interface that has just one abstract method.1
Many existing interfaces in the JDK have this property, e.g. Runnable,
FileFilter and ActionListener. In conjunction with the extension of the
collection framework many more functional interfaces were invented.
Here are a couple of simple, yet typical examples.

Examples of simple functional interfaces (taken from the JDK source code):
public interface Runnable {
 public abstract void run();
}

public interface Callable<V> {
 V call() throws Exception;
}

public interface Comparable<T> {
 public int compareTo(T o);
}

public interface FileFilter {
 boolean accept(File pathname);
}

public interface AutoCloseable {
 void close() throws Exception;
}

non-abstract methods in functional interfaces

Functional Interfaces with Additional Non-Abstract
Methods

Functional interfaces must have exactly one abstract method. In addition,
the interface can have an arbitrary number of non-abstract methods. These
non-abstract methods can be default methods, methods inherited from
class Object, or static methods.

Example of a functional interface with a method inherited from class Object:

@FunctionalInterface2
public interface Comparator<T> {
 int compare(T o1, T o2);
 boolean equals(Object obj);
 // not abstract; implementation inherited from Object

1 These interfaces were initially called SAM (single abstract method) Types.

2 Note functional interfaces can be qualified by the @FunctionalInterface
annotation. It is discussed in the section on "Annotation @FunctionalInterface":

70 Functional Interfaces

}

The compare method is abstract, because it has no implementation. The equals
method is non-abstract, although it has no implementation specified in the
declaration of interface Comparator. But every class inherits a default
implementation of the equals method from class Object. For this reason, the
equals method is non-abstract and the Comparator interface is a functional
interface.

All public methods inherited from class Object are thus considered non-abstract
methods. This is different for protected methods inherited from class Object.

Example of a functional interface with a protected method inherited from class
Object:
@FunctionalInterface
public interface Producer<T> extends Cloneable {
 T produce();
 Object clone(); // error; multiple abstract methods
}

The clone method is abstract, although it is inherited from class Object. But the
clone method is protected in class Object and thus no implementation is
publicly available in a subclass of Object. For this reason, the clone method is
considered abstract and the Producer interface is not a functional interface.

Functional interfaces can have default static methods in addition to the single
abstract method.

Example of a functional interfaces with additional default method:
@FunctionalInterface
public interface Function<T, R> {
 public R apply(T t);

 public default <V> Function<V, R> compose
 (Function<? super V, ? extends T> before) {
 Objects.requireNonNull(before);
 return (V v) -> apply(before.apply(v));
 }
 public default <V> Function<T, V> andThen
 (Function<? super R, ? extends V> after) {
 Objects.requireNonNull(after);
 return (T t) -> after.apply(apply(t));
 }
 public static <T> Function<T, T> identity() {
 return t -> t;
 }
}

Functional Interfaces 71

The apply method is abstract, i.e., it has no implementation. It is the functional
method of interface Function. All other methods have implementations. The
methods compose and andThen are default methods3. The identity method is
a static interface method4. Default methods and static methods cannot be
abstract; they always have an implementation. The only abstract method is the
apply method and for this reason the Function interface is a functional interface.
@Functionalnterface annotation

Annotation @FunctionalInterface

Interface definitions can be marked with the annotation @FunctionalInterface.
The @FunctionalInterface annotation is defined in package java.lang.

Example of an interface with a @FunctionalInterface annotation:
@FunctionalInterface
public interface Readable {
 public int read(java.nio.CharBuffer cb) throws IOException;
}

@FunctionalInterface is an informative annotation that indicates that an
interface is intended to be a functional interface. The compiler checks whether
the annotated type is an interface and whether it has one abstract method.
Otherwise it issues an error message.

The purpose is to ensure that a functional interface remains a functional interface
and is not inadvertently turned into a regular interface, for instance, by addition of
another abstract method.

Example of an error message triggered due to a @FunctionalInterface
annotation:
@FunctionalInterface
private interface Producer<R> {
 // error: not a functional interface
 R produce();
 R produce(R arg);
}

Functional interfaces need not be qualified by the @FunctionalInterface
annotation. The compiler treats any interface meeting the definition of a
functional interface as a functional interface regardless of whether or not a
@FunctionalInterface annotation is present on the interface declaration.
generic functional interface

3 Default methods are discussed in the section on "Default Interface Methods".

4 Static interface methods are covered in the section on "Static Interface Methods".

72 Functional Interfaces

Generic Functional Interfaces

Generic Interface

Functional interfaces may be generic. We have already seen several examples.

Examples of generic functional interfaces:
@FunctionalInterface
public interface Callable<V> {
 V call() throws Exception;
}

@FunctionalInterface
public interface Comparator<T> {
 int compare(T o1, T o2);
}

@FunctionalInterface
public interface Function<T, R> {
 public R apply(T t);
}

Non-Generic Interface with a Generic Single Abstract Method

In these examples the functional interface is generic and the single abstract
method uses the enclosing interface's type parameters. It is even allowed that the
single abstract method has its own type parameters. Here is an example of a
(contrived) non-generic functional interface with a generic method:
@FunctionalInterface
interface RecursiveExecutor {
 <T> T execute(RecursiveTask<T> a);
}

Note, that functional interfaces with a generic method cannot be
implemented by means of lambda expressions, because generic lambda
expressions are not permitted5. Only a method reference may be used as
the implementation of the functional interface RecursiveExecutor, like in
this example:
RecursiveExecutor pool = ForkJoinPool.commonPool()::invoke;

parameterization of generic interface raw type of generic interface

5 See the sections on "Generic Lambda Expressions" and on "Type Inference " for details.

Functional Interfaces 73

Raw Types and Parameterizations of Generic Interfaces

Consider a generic interface that is a functional interface like for instance
Callable<V>. If we replace the type parameter V by a concrete type, then
the resulting parameterization of the generic interface is functional, too.
That is, Callable<String>, Callable<Long>, etc. are a functional interface
as well.

The same holds if we drop the type parameters altogether and use the raw
type. That is, the raw type Callable is a functional interface, too.

Below are examples of subtypes of parameterizations and raw forms of a generic
functional interface: The comments denote the respective inherited single
abstract method.
@FunctionalInterface
public interface StringCallable extends Callable<String> {
 // String call() throws Exception;
}

@FunctionalInterface
public interface RawComparator extends Comparator {
 // int compare(Object o1, Object o2);
}

@FunctionalInterface
public interface StringProducer<T> extends Function<T, String> {
 // public String apply(T t);
}

Non-Functional Interfaces that Collapse into Functional Interfaces

In rare cases the parameterization of a non-functional generic interface
can be a functional interface. This can happen if a generic interface has
overloaded methods that collapse into a single abstract method for certain
parameterizations. This will only happen infrequently, but here is an
example of this corner case.

Examples of parameterization of a non-functional generic interface with
collapsing methods:
interface Sink<T, N extends Number> { // not functional
 void consume(T arg);
 void consume(N arg);
}
@FunctionalInterface
interface NumberSink extends Sink<Number, Number> {
 // void consume(Number arg);
}

The generic Sink interface has two abstract methods, both named consume, but
with different argument list. If both type parameters are replaced with the same

74 Functional Interfaces

concrete type the overloaded methods collapse into a single abstract method. For
this reason the subinterface NumberSink is a functional interface; the comment
denotes the single abstract method that is inherited from the superinterface
Sink<Number,Number>.
intersection of functional interfaces

Intersection of Functional Interfaces

An interface can be derived from several superinterfaces. If the superinterfaces
are functional interfaces, the resulting intersection type is a functional interface,
too, if the intersection contains a single abstract method. This abstract method
may even be generic.

These cases will be rare in practice, as it is only an issue if the functional
superinterfaces have single abstract methods with the same name and matching
signatures. Belowe are a couple of examples of these corner cases.

Example of the intersection two functional interfaces:
@FunctionalInterface
interface Printable {
 void print(String s);
}
@FunctionalInterface
interface Formatter {
 void print(String s);
}
@FunctionalInterface
interface PrettyPrinter extends Printable, Formatter {
 // void print(String s);
}

Quite obviously the intersection type PrettyPrinter has a single abstract
method since the two superinterfaces have identical abstract methods. The
comment in the subinterface shows the signature of the inherited single abstract
method.

Here is a more complex example that involves three functional
superinterfaces, two of which are generic interfaces. The three functional
interfaces are:
@FunctionalInterface
interface RawProducer {
 Object produce();
}
@FunctionalInterface
interface GenericProducer<S> {
 S produce();
}
@FunctionalInterface
interface Source<T> {
 T produce();

Functional Interfaces 75

}

Each of the three functional interfaces has a different produce method
(with different return type). We consider the two subinterfaces

Example of the intersection of several functional interfaces:
@FunctionalInterface
interface ObjectProducer extends RawProducer,
 GenericProducer<Object>,
 Source<Object> {
 // Object produce();
}

In this example the three superinterfaces single abstract methods collapse into a
single signature in the subinterface ObjectProducer. The comment in the
subinterface shows the signature of the inherited single abstract method.

Example of the intersection of several functional interfaces with a generic
single abstract method:
@FunctionalInterface
interface Producer<S> extends RawProducer,
 GenericProducer<S>,
 Source<S> {
 // S produce();
}

In this example it is less obvious why the subinterface Producer<S> is a
functional interface. The inherited single abstract methods do not have identical
signatures, but the method signatures are compatible enough to yield a functional
interface as the intersection type. This is because the signature <S extends
Object> S produce() is equivalient to <T extends Object> T produce() and
both are a subsignature of Object produce().

As you can tell form the last example in particular, the rules regarding
subsignatures are fairly complex. There are many issues involved: the relationship
between generic types and raw type as well as issues of substitutable return types
and compatible throws clauses. If you are interested in the details, the language
specification would be the best source for further information.

For all practical purposes the compiler will figure out whether the intersection of
functional interfaces is still functional. In case of doubt, use the
@FunctionalInterface annotation: qualify the subinterface with the annotation
and the compiler swill raise a compile-time error message if the subinterface is not
functional.

76 Target Typing

Target Typing

Lambda expressions and method/constructor references conceptually
denote functions, but Java has no such thing as function types. Instead,
lambda expressions and method/constructor references must be
converted to functional interface types. We discussed the need for functional
interface types and related details in the section on "Functional
Interfaces". Simply put, a functional interface type is an interface with
one abstract method.

We also mentioned that the compiler infers the functional interface type,
to which a lambda expression or method/constructor reference is
converted, from the context in which it appears. This context dependent
type inference process is called target typing. In the following we will
discuss how target typing works. Let us start by clarifying a couple of
terms.
target type

Definition

In Java, every expression must have a type. The expression's type is
determined by the compiler. The type deduction process performed by
the compiler depends on the nature of the expression. Java has two sorts
of expressions:

 For so-called standalone expressions the type deduction can be
performed by just analyzing the expression. Examples of standalone
expressions are array.length, i+5, or obj.getClass().

 For so-called poly expressions the type deduction requires analysis of
both the expression and the context in which the expression appears.
Poly expressions in isolation, i.e., without a context, have no type. An
example of a poly expression is new HashSet<>(). It can mean
different things in different context.

When an expression appears in a context, its type must be compatible with a type
expected in that context. The expected type is called the target type.

The expression itself has a deduced type. For poly expressions the deduced type can
be influenced by the target type. The compiler analyses the context, determines
the target type and deduces a type for the expression that is equals or convertible
to the target type. In contrast, a standalone expression's type is always
independent of the target type; it just has to be convertible to the target type.

Target Typing 77

Lambda expressions and method/constructor references are always poly
expressions, i.e., their type is deduced by the compiler from the enclosing context
in which they appear. Lambda expressions and method/constructor references
are slightly different from other types of poly expressions:

their deduced type is not just convertible, but equal to the target type, and

the target type cannot be an arbitrary type, but must be a functional interface type.

Before we address the process of target typing in further detail we take a
look at Java expressions in general and how the compiler determines the
type of an expression. This is background information that aids the
understanding of type inference in general and for lambda expressions
and method/constructor references in particular. A basic understanding
of type inference may be helpful in situations where the type inference
process fails. Failure might occur for various reasons, e.g. due to
incorrect syntax, due to limitations of the compiler's type inference logic,
or because of an insufficient context. With a basic understanding of
type inference you will be capable of figuring out why type inference fails
and how to work around it.

If you are already familiar with poly expressions and the Java compiler's
type deduction strategies you might want to skip the subsequent sections
and continue with the section on "Target Typing for Lambda
Expression".

Classification of Expressions

For each expression in the source code the compiler must determine the type of
the expression. It applies different strategies for different kinds of expressions. In
Java there are two types of expressions

 Standalone expressions. These are expressions whose type can be
determined entirely from the contents of the expression.

 Poly expressions. These are expressions that can have different types in
different contexts. A poly expression's type is determined by the
compiler from the context in which the poly expression is defined.

Determining an expression's type is comparatively easy for constant and
standalone expressions and much more challenging for poly expressions.
Let us take a look at examples for the various types of expressions.
standalone expression

78 Target Typing

Standalone Expressions

Most expressions are standalone expressions. Here are a couple of
examples:
List<String> list = new ArrayList<String>(); //1
list.add("Emma"); //2
Object ref = list.get(0); //3

The expression new ArrayList<String>() in line //1 is a standalone
expression. Even in isolation the compiler can tell that the expression new
ArrayList<String>() has the type ArrayList<String>. The expression's type
is always the same, regardless of the context in which it appears. It does not
matter whether it appears as the right-hand side of an assignment - like in the
example above - or as the argument of a method invocation or in a cast
expression. The type is always the same.

The expression "Emma" in line //2 has a constant value and the compiler can
immediately tell that its type is String.

The expression list.get(0) in line //3 is a standalone expression, too. The
compiler knows that the type of the list variable is List<String>, that the get
method's return type is String, and concludes that the type of the entire
expression is String. This, too, is independent of the context.
poly expressions

Poly Expressions

Java has a category of types called poly expressions. The type of a poly
expression varies depending on the context in which the expression
appears. The type is not specified by the programmer (in terms of Java
syntax), but instead inferred by the compiler. Lambda expressions and
method/constructor references are an example of poly expressions, but
they are not the only poly expressions in Java.

Here is an overview of all poly expressions in Java along with the context
in which they are permitted to appear. Subsequently we will discuss type
inference for each of the poly expressions.

Poly Expression Example Context

Instance creation
expression using a
"diamond
operator"

new List<> assignment or
method invocation

Invocation of a
generic method or

Collections.emptySet() assignment or
method invocation

Target Typing 79

constructor

Conditional
operator
expression

isSequential ?
new HashSet<>() :
Collections.synchronizedSet
 (new HashSet<>())

assignment or
method invocation,
unless both
operands produce
primitives (or
boxed primitives)

Method or
constructor
references

String::compareToIgnoreCase assignment, method
invocation, or cast

Lambda
expressions

(i,j) -> i<j assignment, method
invocation, or cast

poly context

Poly Contexts

As explained above a poly expression need a context from which the
compiler can infer the poly expression's type. We call such a context a
poly context. Before we take a closer look at the various poly expressions
and how their target type is deduced, let us see in which contexts are poly
contexts and which ones are not.

 In an assigment context the poly expression appears on the right-hand
side of the assignment operator '='. The target type is the type of the
left-hand side of the assignment.

Example TargetType variable = poly_expression;

 In a method invocation context the poly expression appears as an
argument in a method or constructor call. The target type is the
declared type of the corresponding method parameter.

Example: ReturnType methodName(TargetType arg);
 methodName(poly_expression);

 In a cast context the poly expression is preceeded by a cast operation,
i.e., a type enclosed in parentheses. The cast's target type serves as
the poly expression's target type.

Example (TargetType) poly_expression

 A return context, i.e., when a poly expression appears as the expression
after the return keyword in a method body, is considered an
assignment context. The target type is the method's declared return
type.

Example: TargetType methodName() { return poly_expression; }

80 Target Typing

 A receiver context in a method invocation or field access, i.e., when a
poly expression appears before the member selection symbol '.', is
not considered a context for a poly expression. Allowing this context
would add another dimension to the complexity of the type inference
algorithm, since the target type cannot be easily derived.

Examples: poly_expression.field
 poly_expression.method()

 A loop context, i.e., when a poly expression appears as the expression in
an enhanced for loop, is not considered a context for a poly
expression. This is as if the expression were a receiver, namely
exp.iterator() (or, in the array case, exp[i]).

Example: for (Type variable : poly_expression) { … }

 A string context is not considered a context for a poly expression. It
does not provide any useful information for type inference, because
every value can be converted to a String.

Example: "prefix." + poly_expression

 Numeric and boolean contexts (e.g. loop conditions, assert operands,
binary expression operands) are not considered contexts for a poly
expression. The reason is that some poly expressions cannot target a
primitive type (instance creation expressions, lambda expressions,
method references) and working out proper type inference for the
remaining poly expressions would be quite complex without much
payoff.

Example: if (poly_expression) …
 5L + poly_expression

In a context that the compiler considers not a type inference context for a
given poly expression is simply ignored. The compiler simply does not
take any information from the context for deduction of missing type
information.

Target Typing for Poly Expressions

In this section we take a look at type inference for the various types of
poly expressions.
target typing for diamond operator

Target Typing for Instance Creation Expressions with the
"Diamond Operator"

Instance creation expressions are poly expressions when they use the
"diamond operator". Let us take a look at an example. It shows the

Target Typing 81

identical expression is two different contexts. In each context the
expression has a different deduced type.

Example of an instance creation with "diamond operator":
Collection<Object> objs = new ArrayList<>(); //1
List<String> list = new ArrayList<>(); //2

The expression new ArrayList<>() in line //1 and //2 is a poly expression. It
is a new expression (aka instance creation expression) for a generic type that uses a
diamond "<>" in lieu of type arguments. In other words, the type parameter for
the generic type ArrayList has been omitted. The diamond operator turns the
expression into a poly expression. The compiler must figure out the missing type
parameter before the type of the entire instance creation expression can be
determined.

In the example above the exact same new expression appears in two different
contexts. In each context it has a different inferred type. In both cases the
context is an assignment context, i.e., the poly expression appears on the right-
hand side of an assignment. For type inference the compiler takes a look at the
left-hand side of the assignment and finds the target type, i.e., the type that is
required in the given assignment context. It then checks whether a type
parameter can be found for the right-hand side that yields a compatible type.
This way the compiler deduces that the poly expression must be of type
ArrayList<Object> in line //1 and of type ArrayList<String> in line //2.

Instance creation expressions with "diamond operator" may appear in an
assignment context, like in the example above, or in a method invocation context,
i.e., as the argument of a method. Other contexts are not considered for type
inference. If, for instance, the instance creation expression appears in a casting
context the compiler simply ignores the context information and performs the
type inference as though there were no context at all. Here is an example:

Example of an instance creation expression with "diamond operator" in a casting
context:
List<Long> list = (List<Long>) new ArrayList<>(); // error

The compiler ignores the cast context because casting is not a valid context for
type inference of an instance creation expression. It deduces ArrayList<Object>
as the type of the new expression (as though there were no context at all) and
then complains about incompatible types because an ArrayList<Object> cannot
be converted to a ArrayList<Long>.

The error message can be avoided by not using the diamond operator, but
providing the correct type parameter.

The same example, but this time corrected:
List<Long> list = new ArrayList<Long>(); // fine

82 Target Typing

The example compiles because the instance creation expression new

ArrayList<Long>() is no poly expression and for this reason no context
dependent type inference is needed.
target typing for generic methods

Target Typing for Invocation of Generic Methods

The invocation of a generic method can be a poly expression. Below is an
example that uses the identical method invocation in two different
contexts. In each context the expression has a different deduced type.

Example of an invocation of a generic method:
Collection<Object> objs = new ArrayList<>();
List<String> list = new ArrayList<String>();
objs = Arrays.asList("Emma", "Otto", "Lilo"); //1
list.addAll(Arrays.asList("Emma", "Otto", "Lilo")); //2

The expression Arrays.asList("Emma", "Otto", "Lilo") in line //1 and
//2 is a poly expression. It is the invocation of the generic asList method of
class Arrays. Generic methods are usually invoked without specifying the
method's type parameter(s). In this case the compiler must infer the missing
parameter(s).

In line //2 the poly expression appears in an assignment context, namely
assignment to a left-hand side of type Collection<Object>. In line //2 it appears
in an invocation context, i.e., as the argument of the addAll method of class
List<String>.

In the assignment context the compiler applies the same strategy as described
above. It takes a look at the left-hand side of the assignment and figures out that
the target type is Collection<Object>. The right-hand side will produce the
compatible type List<Object> when the missing type parameter is inferred as
type Object. For this reason the deduced type for the method invocation
expression Arrays.asList("Emma", "Otto", "Lilo") is List<Object>.

In the method invocation context in line //2 the compiler first determines the
target type by figuring the declared argument of the invoked addAll method. It
finds that the declared argument type of the addAll method in class
List<String> is Collection<String>. It means that the result of the asList
method must be compatible to the target type Collection<String>. This can be
achieved if the type parameter of the generic asList method is String.
Eventually, the type of the entire poly expression Arrays.asList("Emma",
"Otto", "Lilo") is deduced as List<String>.

Again, the compiler deduces different types for the exact same method
invocation expression depending on the context: the poly expression must be of
type List<Object> in line //1 and of type List<String> in line //2. Note that

Target Typing 83

in both examples the target type (Collection<Object> and
Collection<String>) differs from the deduced type (List<Object> and
List<String>). The deduced type is compatible to the respective target type and
the compiler automatically applies the necessary conversions.

Invocations of a generic method may appear in an assignment context or in a
method invocation context, as illustrated in the example. Other contexts are not
considered for type inference.
target typing for conditional operator

Target Typing for Conditional Operator Expressions

The ternary conditional operator "?:" can be a poly expression. Below is
an example that uses the identical conditional expression in two different
contexts. In each context the expression has a different deduced type.

Example of conditional operator expression:
Set<String> stringSet
 = isSequential
 ? new HashSet<>()
 : Collections.synchronizedSet(new HashSet<>()); // 1
Set<Number> numberSet
 = isSequential
 ? new HashSet<>()
 : Collections.synchronizedSet(new HashSet<>()); // 2

The conditional operator expression in line //1 and //2 is a poly expression
because both its operands are poly expressions. Before Java 8, such an expression
was illegal; the conditional operator was not considered as a context for type
inference. Since Java 8, it is permitted.

The compiler first determines the type of the left-hand side of the assignment; the
required target type is Set<String> in line //1 and Set<Number> in line //2.
Then the compiler pushes this type information onto the two operands of the
conditional expression. Thus the required target type for both operands must be
compatible to Set<String> and Set<Number> respectively.

For the first operand the compiler figures out that a type argument of String or
Number respectively would yield the compatible types HashSet<String> and
HashSet<Number>.

The second operand is more challenging. It is the invocation of the generic
synchronizedSet method of class Collections. The compiler infers that the
generic method needs a type parameter of String or Number in order to yield the
compatible return types Set<String> or Set<Number>. This determines the
required argument type of the generic synchronizedSet method and leads to the
requirement that the instance creation expression for the HashSet must be
compatible to Set<String> or Set<Number>. This can be achieved by inferring
String and Number as the type parameters for the HashSet creation.

84 Target Typing

Eventually, the compiler deduces that the poly expression is of type Set<String>
in line //1 and of type Set<Number> in line //2.

Conditional operators may appear in an assignment context, as illustrated in the
example, or in a method invocation context. Other contexts are not considered
for type inference.
target typing for method/constructor references

Target Typing for Method and Constructor References

Method and constructor references are poly expressions. Below is an
example that uses the identical method reference in several different
contexts. In each context the expression has a different deduced type.

Example of a method reference:
List<String> list = new ArrayList<String>();
Function<String[],String[]> mapper = list::toArray; // 1
ThreadLocal<Object[]> names =
ThreadLocal.withInitial(list::toArray); // 2
Object task = (Supplier<?>)list::toArray; // 3
Object[] tasks = new Object[]
{(Callable<Object[]>)list::toArray}; // 4

The method reference list::toArray is a poly expression. Method and
constructor references are always poly expressions; their target type must be
inferred by the compiler from the enclosing context. Hence it is a compile-time
error if a method or constructor reference occurs in someplace other than an
assignment context, an invocation context, or a casting context.

In line //1 the context is an assignment context. First, the compiler checks the
left-hand side and figures out what the required target type is and whether it is a
functional type. Method and constructor references as well as lambda expression
may only appear in a context where the target type is a functional interface type.
In line //1 the left-hand side type is Function<String[],String[]>, which is a
functional interface type from package java.util.function.

Next the compiler figures out the so-called function descriptor of both the left- and
the right-hand side and checks whether they are compatible. The function
descriptor is basically the description of a method without its name and body. It
consists of type parameters, formal parameter types, return types, and thrown
types. The function descriptor is similar to the function signature. The difference is
that the return type is irrelvant for the signature, but part of the descriptor.

In line //1 the left-hand side descriptor is the descriptor of the apply method of
interface Function<String[],String[]>. Its descriptor is (String[])->
String[], which means: it is a function that takes one argument of type
String[] and returns a value of type String[] and has no type parameters (i.e.,
it is not generic) and does not throw any checked exceptions.

Target Typing 85

The right-hand side descriptor is the descriptor of the method reference
list::toArray. Since the list variable is of type List<String> the compiler
finds that there are two candidate methods:

 a toArray method without arguments that returns an Object[] and
has the descriptor ()->Object[], and

 a generic toArray method with a T[] argument that returns a T[] with
the descriptor <T>(T[])->T[].

Only the second method yields a compatible descriptor, namely (String[])->
String[] when the type parameter T is replaced by the type String. The
resulting function descriptor exactly matches the left-hand side's descriptor. The
functional interface on the left-hand side is then determined as the target type of
the method reference on the right-hand side of the assignment.

Eventually, the poly expression list::toArray in line //1 has the deduced type
Function<String[],String[]>.

In line //2 the context is a method invocation context because the method
reference list::toArray is passed as an argument to the withInitial method
of class ThreadLocal<Object[]>. from package java.lang. In this context, the
compiler figures out the declared argument type of the invoked method and
checks whether it is a functional interface type. The argument type of the
withInitial method is Supplier<Object[]>, which is a functional interface
type from package java.util.function. Hence the target type is
Supplier<Object[]>.

Then the compiler again figures out the function descriptors and checks whether
they match. The target type is Supplier<Object[]>; it has a get method that
takes nothing and returns an Object[]. Its descriptor is ()->Object[]. The
method reference list::toArray again boils down to the two candidate
methods already described above. This time the first candidate has a matching
function descriptor.

Eventually, the poly expression list::toArray in line //2 has the deduced type
Supplier<Object[]>.

In line //3 the context is a casting context. Since the assignment of a method
reference to a variable of type Object is a context in which the compiler cannot
infer a target type for the method reference from the left-hand type, we use a cast
to aid type inference. For this reason the method reference list::toArray is
preceeded by a cast with target type Supplier<?>. In this context, the compiler
checks whether the cast's target type is a functional interface type. We have
already seen that Supplier<?> is a parameterization of the generic functional
interface type Supplier<T> from package java.util.function.

86 Target Typing

Then the compiler again compares the function descriptors. The cast's target type
Supplier<?> has the descriptor ()->?, which mean its get method takes nothing
and returns an arbitrary unknown type. For the method reference
list::toArray we again have two candidate methods, as described above. The
first candidate has the function descriptor ()->Object[], which is compatible to
the required descriptor of ()->?.

Eventually, the poly expression list::toArray in line //3 has the deduced type
Supplier<?>.

In line //4 the poly expression appears as an array initializer. Array initializer
contexts are like assignments, except that the "left-hand side variable" is an array
component and its type is derived from the array's type.

Note that in all examples the required target type and the constructor/method
reference's deduced type are identical. This is not by chance; it is intended.
Different from other poly expressions the type of a constructor/method
reference is not just convertible to, but infact identical to its target type. The
important prerequisite is that the constructor/method reference is compatible
with its target type; otherwise. Compatibility depends on the function descriptor;
to derive this descriptor, a type target must be a functional interface type.
target typing and checked exceptions

Target Typing & Checked Exceptions

So far we have only considered target typing for references to methods and
constructors that do not throw any checked exceptions. How does target typing
work if checked exceptions are involved and the referenced methods and
constructors have throws clauses? It turns out that the compiler checks throws
clauses for compatibility and reports errors if they are incompatible. Let us take a
look at an example.

Example of a method reference that throws checked exceptions:
Function<Future<Number>,Number> f1
 = Future<Number>::get; //1
 // error: incompatible throws clause

ThrowingFunction<Future<Number>,Number,Exception> f2
 = Future<Number>::get; //2

Let us first see what the involved types and methods look like.

The method reference in our example is the get method of the Future interface
defined in package java.util.concurrent. Here is the relevant excerpt from
interface Future:
public interface Future<V> {
 V get()
 throws InterruptedException,
 ExecutionException;

Target Typing 87

 V get(long timeout, TimeUnit unit)
 throws InterruptedException,
 ExecutionException,
 TimeoutException;
}

The method reference appears in two assignment contexts. The left-hand side of
the assignment in line //1 uses the parameterization
Function<Future<Number>,Number> of the functional interface Function
defined in package java.util.function. Here is the relevant excerpt from
interface Function:
@FunctionalInterface
public interface Function<T, R> {
 R apply(T t);
}

In line //2 the left-hand side is of a different functional interface type, namely a
parameterizaton of the type ThrowingFunction, which is a functional interface
type that looks like this:
@FunctionalInterface
public interface ThrowingFunction<A,R,E extends Exception> {
 R get(A arg) throws E;
}

Now, let us see which role the get method's throws clause plays in the target
typing process.

In line //1 the target type on the left-hand side has the function descriptor
(Future<Number>)->Number, which means it is a function that takes a
Future<Number>, returns a Number as a result, and does not throw any checked
exceptions.

The Future interface's get method is overloaded. The two candidates have the
descriptors
(Future<Number>,TimeUnit)->Number throws TimeoutException,
 ExecutionException,
 InterruptedException

and
(Future<Number>)->Number throws ExecutionException,
 InterruptedException

The first candidate does not match at all because the number of required
arguments is different (two arguments vs. one argument). The second candidate
has an almost compatible descriptor; the argument list and the return type match,
only the throws clause is different from the left-hand side's descriptor. The left-
hand side requires that the function must not throw checked exceptions while the
method reference on the right-hand side does raise checked exceptions. Due to
the incompatible throws clause the compiler issues an error message.

88 Target Typing

In line //2 the left-hand side has the descriptor (Future<Number>)->Number
throws Exception. Its clause throws Exception is compatible to the method
reference's clause throws ExecutionException, InterruptedException
because Exception is a common supertype of both ExecutionException and
InterruptedException.

The compiler deduces that the poly expression Future<Number>::get in line //2
has the target type ThrowingFunction<Future<Number>,Number, Exception>.

Exception Tunnelling - Wrapping Checked Exceptions into Runtime Exceptions

Since most functional interface types defined by the JDK and in particular all
functional interface types in package java.util.function do not permit
checked exceptions it is common practice to wrap any checked exceptions raised
by a lambda expression or method/constructor reference into an unchecked
RuntimeException.6

Here is an example of such a wrapper. We define a runtime exception type
Unchecked and an adapter operation that turns a function with checked
exceptions into a function that only throws a runtime exception.

Example of wrapper for checked exceptions:
@FunctionalInterface
public interface ThrowingFunction<A,R,E extends Exception> {
 R get(A arg) throws E;

 static <A,R,E extends Exception> Function<A,R>
 makeNonThrowing(ThrowingFunction<A,R,E> f) {
 return (A arg) -> {
 try { return f.get(arg); }
 catch (Exception e) {throw new RuntimeException (e);}
 };
 }

Using the adapter operation makeNonThrowing() we can turn the exception
throwing method reference Future<Number>::get into a non-throwing function
that is compatible to the functional interface type Function from package
java.util.function:
Function<Future<Number>,Number> f3
 = ThrowingFunction.makeNonThrowing(Future<Number>::get); //3

In line //3 the method reference Future<Number>::get appears in a method
invocation context. The invoked method makeNonThrowing is a generic method.

6 Another example of exception tunnelling can be found in the section on "Checked
Exceptions".

Target Typing 89

The first step is that the compiler performs type inference for the
makeNonThrowing method and figures out what its type parameters A, R, and E
must be. The compiler infers the target type Function<Future<Number>,
Number> from the left-hand side of the assignment and concludes that the
makeNonThrowing method's type parameters must be A:= Future<Number> and
R:= Number. Since there are no particular requirements for the type parameter E,
i.e. the exception type, the compiler provisionally uses the upper bound and infers
E:= Exception.

The second step is type inference for the method reference
Future<Number>::get. The target type is the makeNonThrowing method's
declared argument type. Given the already inferred type parameters the
makeNonThrowing method has the declared argument type
ThrowingFunction<Future<Number>,Number,Exception> with the descriptor
(Future<Number>)->Number throws Exception. We have already seen above
that this function descriptor is compatible to the function descriptor of
Future<Number>::get.

The compiler deduces that the poly expression Future<Number>::get in line //3
has the deduced type ThrowingFunction<Future<Number>,Number,

Exception>.
target typing and return type

Target Typing & the Return Type

During target typing the compiler does not only check for compatible throws
clauses, but also checks for compatibility of the return types and reports errors if
they are incompatible. Let us take a look at an example.

Example of a method reference with a return type:
ThrowingFunction<Future<Integer>,Number,Exception> f4
 = Future<Integer>::get; //4

We again use a to the get method of the Future interface defined in package
java.util.concurrent.

The target type on the left-hand side of the assignment has the descriptor
(Future<Integer>)->Number throws Exception. The method reference on
the right-hand side has the descriptor (Future<Integer>)->Integer throws
ExecutionException, InterruptedException. In addition to the different
throws clauses also the return type differs: the left-hand side requires a return
type of Number whereas the method reference has the return type Integer. Since
Integer is a sub-type of Number the functions descriptors are compatible.

The compiler deduces that the poly expression Future<Number>::get in line //4
has the deduced type ThrowingFunction<Future<Integer>,Number,

Exception>.
target typing for lambda expressions

90 Target Typing

Target Typing for Lambda Expressions

Lambda expressions are always poly expressions, i.e., their type depends on the
context in which they are declared and the target type is always inferred by the
compiler.

In the following we will discuss target typing for lambda expressions in various
contexts.

Assignment Context

Example of a lambda expression in an assignment context:
BiPredicate<String,String> sp1
 = (s,t) -> s.equalsIgnoreCase(t); // 1
BiFunction<String,String,Boolean> sp2
 = (s,t) -> s.equalsIgnoreCase(t); // 2

In line //1 and //2 we see the lambda expression in two different assignment
contexts. In analogy to method references, the compiler checks the left-hand side
and figures out what the required target type is and whether it is a functional
interface type.

In line //1 the left-hand side type is BiPredicate<String,String>, which is a
parameterization of a generic functional interface type from package
java.util.function. Next the compiler figures out the function descriptor of
both the left- and the right-hand side and checks whether they are compatible.
The right-hand side descriptor is the descriptor of the test method in class
BiPredicate<String,String>. Its descriptor is (String,String)->boolean.

The lambda expression's descriptor is <X,Y>(X,Y)->boolean, which means it
takes two arguments of yet unknown type and returns a boolean value. When
the unknown types are inferred as type X:=String and Y:=String then the
lambda expression's descriptor matches the left-hand side descriptor.

Hence, the poly expression (s,t) -> s.equalsIgnoreCase(t) in line //1 has
the deduced type BiPredicate<String,String>.

In line //2 the left-hand side type is BiFunction<String,String,Boolean>,
which is a functional interface type from package java.util.function. Its
descriptor is the descriptor of the apply method in class
BiFunction<String,String,Boolean>, namely (String,String)-> Boolean.

The lambda expression's descriptor still is <X,Y>(X,Y)->boolean. When the
unknown types are inferred as X:=String and Y:=String and the return type is
boxed to Boolean then the lambda expression's descriptor matches the left-hand
side descriptor.

Hence, the poly expression (s,t) -> s.equalsIgnoreCase(t) in line //2 has
the deduced type BiFunction<String,String,Boolean>.

Target Typing 91

Return Context

Example of the same lambda expression in return context:
BiPredicate<String,String> makePredicate() {
 return (s,t) -> s.equalsIgnoreCase(t); // 3
}

In line //3 we see the lambda expression in a return statement. This is a context
similar to an assignment context. The required target type is the makePredicate
method's declared return type. The required target type therefore is
BiPredicate<String,String>. We have already seen above that the lambda
expression is convertible to this target type.

Hence, the poly expression (s,t) -> s.equalsIgnoreCase(t) in line //3 has
the deduced type BiPredicate<String, String>.

Method Invocation Context

Example of the same lambda expression in a method invocation context
Predicate<String> matches(String arg) {
 return bind1st((s,t) -> s.equalsIgnoreCase(t),arg); // 4
}

In line //4 we see the lambda expression in a method invocation context. The
required target type is the invoked bind1st method's declared argument type.
The bind1st method looks like this:
<T> Predicate<T> bind1st(BiPredicate<T,T> predicate, T first) {
 return s -> predicate.test(first,s);
}

Since the bind1st method is a generic method, its type parameter must be
inferred before its declared argument types are known. Hence the first step is
type inference for the generic bind1st method. It appears in a return context.
The target type is the matches method return type, which is Predicate<String>.
From this requirement the compiler deduces that the bind1st method's type
parameter T must be inferred as T:=String.

Then the compiler pushes this requirement onto the bind1st method's
arguments, which then must be of type BiPredicate<String,String> and
String.

This way, the compiler figures out that target type for the lambda expression is
BiPredicate<String,String>. We have already seen above that the lambda
expression is convertible to this target type.

Hence, the poly expression (s,t) -> s.equalsIgnoreCase(t) in line //3 has
the deduced type BiPredicate<String, String>.

92 Target Typing

Casting Context

Example of the same lambda expression in context that demands casting:
BiFunction<String,String,Integer> sp3
 = ((s,t) -> s.equalsIgnoreCase(t)).andThen(b->b?1:0); // 5
 // error: illegal context

BiFunction<String,String,Integer> sp4
 = ((BiFunction<String,String,Boolean>)
 (s,t) -> s.equalsIgnoreCase(t)) // 6
 .andThen(b->b?1:0);

In line //5 we see the lambda expression in an illegal context. A lambda
expression is not allowed as the receiver in a method invocation, field access, etc.,
i.e., it must not appear on the left-hand side of the member selection symbol '.'.
In fact, no poly expression is permitted in this context. The reason is that it
would add another dimension to the complexity of the compiler's type inference
algorithm.

In such a situation casting comes to the rescue, as demonstrated in line //6. The
target type for deduction of the method reference's type is the cast's target type
BiFunction<String,String,Boolean>. We have already seen above that the
lambda expression is compatible to the target type of the cast.

Hence, the lambda expression in line //6 has the deduced type
BiFunction<String,String,Boolean>.
intersection type

Casting to an Intersection Type

A special case of a casting context is a situation where the target type of
the cast is a so-called intersection type. Intersections types are a new feature
since Java 8; in earlier versions of Java they were illegal. Casts to an
intersection type are necessary when a lambda expression (or
method/constructor reference) must be assigned to a variable whose type
is an empty marker interface type, like for instance java.io.Serializable.

Let us consider an example. It uses the same lambda expression as before, but
this time in a casting context with an intersection type.

Example of a lambda expression in a casting context with an intersection type:
Serializable f1
 = (s,t) -> s.equalsIgnoreCase(t); // 7
 // error: Serializable is not a function type
Serializable f2
 = (BiPredicate<String,String> & Serializable) // 8
 (s,t) -> s.equalsIgnoreCase(t);

In line //7 we see the lambda expression in an assignment context where the
target type is Serializable. The compiler rightly complains because the empty

Target Typing 93

marker interface Serializable is not a functional interface type. So, what can
we do to force the lambda expression to conform to the Serializable interface?
We could define a SerializableBiPredicate helper interface, which would be a
subinterface of both the Serializable and the BiPredicate interface and could
serve as the target type. Fortunately, this is not necessary. Since Java 8, we can
cast to so-called intersection types.

An intersection type is a list of types like BiPredicate<String,String> &
Serializable in line //8. An intersection type can appear as the target type of a
cast expression. The resulting target type is a synthetic type that is a subtype of all
specified types. In particular, if the list includes an empty marker interface, the
synthetic intersection type is also a subtype of the marker interface.

Intersection types did already exist before Java 8. They were internally used by
the compiler in the processes of wildcard capture and type inference. But before
Java 8 it was not possible to express an intersection type directly in a Java
program, as no syntax supported this. Since Java 8, intersection types can be used
as target types of casts.

They are particularly useful as the casting context for a lambda expression or a
method/constructor reference. As explained in the example above, it provides a
simple way of making a lambda expression or a method/constructor reference
conform to an interface such as Serializable. If an intersection type is used in a
casting context for a lambda expression or a method/constructor reference, then
the intersection must be a functional interface type. It typically means that one
type is a functional interface and the others are marker interfaces.

Eventually, the result of the target typing process is that the lambda expression in
line //8 has the deduced type BiPredicate <String,String> &

Serializable.

Wrap-Up

In this section we looked at the type inference process that the compiler performs
for poly expressions in general and lambda expressions and method/constructor
references in particular. The selected examples were fairly simple. In reality the
process is more complex, especially when several type deduction processes must
be performed simultaneously for a given expression. Mind, the compiler applies
several type deductions:

 overload resolution (i.e. selecting a matching method from a set of
candidate methods with the same name and different signatures) ,

 type argument inference (i.e. figuring out which type parameters must be
used for parameterization of a generic type or method if the type

94 Target Typing

parameters are omitted in a generic method invocation or instance
creation), and

 target typing (i.e. deducing a lambda expression's or
method/constructor reference's matching functional interface type).

The likelihood for type inference failures increases the more deductions
must be performed for a given expression. In the next section we want to
explore some of these problematic situations where type inference fails.

Type Inference Issues

Occasionally, type inference fails and the compiler may abort the type
deduction process with an error messages. In these situations you need to
understand the issue and must find a workaround.

Coping with type inference issues has two aspects: usage and design of an
API.

 Usage. As the user of an API that is prone to type inference failures
you need to figure out a workaround. Often the problem can be
solved by adding casts in the right places or replacing implicit with
explicit lambdas (an implicit lambda being a lambda expression
without specification of the arguments types).

 Design. As the designer of an API you might want to set up the API in
an manner that avoids type inference failures in the first place. This
can be achieved by avoiding overloading and/or avoiding wildcards
or generics in general.

In this section we want take a look at a couple of situations where type
inference fails. We start with issues that occur frequently in practice and
proceed to more esoteric situations that are rare in practice.

Common Type Inference Issues

In the section on "Poly Expressions" we learnt that in isolation, i.e.
without a context, poly expressions such as lambda expressions and
method/constructor references do not have a type. For instance, the
lambda expressions s -> s.length() is meaningless unless it appears in a
context from which the compiler can deduce the type of s.

In the section on "Poly Contexts" we have seen that there are several
contexts permitted as type inference context for a lambda expression or
method/constructor reference: assignment, method invocation, and cast.
The type inference process is comparatively easy in an assignment or cast

Target Typing 95

context, but can be fairly complex in a method invocation context,
especially when the invoked method is overloaded.

In the following we will first look into harmless poly contexts and then
into the problematic ones. The harmless situation are of interest because
the problematic ones can be resolved by turning them into harmless
ones.

Harmless Poly Contexts

Let us study an example. Consider the functional interfaces Function,
ToIntFunction, ToLongFunction, and ToDoubleFunction from package
java.util.function:
interface Function<T,R> { R apply (T arg); }
interface ToIntFunction<T> { int applyAsInt(T arg); }
interface ToLongFunction<T> { long applyAsLong (T arg); }
interface ToDoubleFunction<T> { double applyAsDouble(T arg); }

The lambda expressions s -> s.length() can be compatible to either of
them. Let us say, the length method in the lambda expression denotes
the length method declared in the CharSequence interface and defined in
any of its subtypes (String, StringBuiler, StringBuffer, etc.). The
length method returns an int value.

The deduced type of the lambda expression can be any of the functional
interfaces above, provided that the type parameter T is replaced with
CharSequence or a subtype thereof and the type parameter R with a type
that can store an int. Examples of compatible functional types include:
ToIntFunction<String>, ToLongFunction<CharSequence>, Function

<StringBuilder,Integer>, Function<String,Object>, and many more.
When the lambda expression appears in a poly context then the compiler
must infer one of these compatible types.

In an assignment or cast context the type inference is fairly easy because
the target type is clearly defined. Here are some examples.

Examples of assignment context:
Function<String,Object> f1 = s -> s.length(); //1
ToLongFunction<CharSequence> f2 = s -> s.length(); //2

Examples of cast context:
Object o = (ToIntFunction<StringBuilder>) s -> s.length(); //3
 o = (Function<CharSequence,Number>) s -> s.length(); //4

In the assignment context the target type is the type on the left-hand side
of the assignment. In the cast context the target type for type inference is
the target type of the cast. In all cases the target type is clearly defined.

96 Target Typing

In //1 the compiler deduces String as the type of s and subsequently
checks whether the return type of the lambda expression (namely int) is
compatible to the return type in the target type's signature (namely
Object). With autoboxing int is convertible to Object and the type
inference succeeds.

In a similar fashion, the compiler deduces String, StringBuilder or
CharSequence as the type of s and subsequently checks for the return type
compatibility, i.e. whether int is compatible to long, int, or Number
respectively.

Type inference is equally easy if the inference context is a method
invocation where the method in question is not overloaded.

Example of simple method invocation context:
interface I { double transform(ToDoubleFunction<String> f); }

I iRef = … some implementation of iterface I …
iRef.transform(s -> s.length); //5

The target type for type inference is the method's declared argument type
ToDoubleFunction<String>. The compiler deduces String as the type of s
and finds that the return types int and double are compatible.
target typing & overloading

Problematic Poly Contexts

The type inference process is more complicated when the invoked
method in an invocation context is an overloaded method. Below is an
example where the lambda expression is passed to an overloaded method.

Example of a method invocation context with overloading:
interface I<T> {
 <R> R map(Function<T,R> f);
 int map(ToIntFunction<T> f);
 long map(ToLongFunction<T> f);
 double map(ToDoubleFunction<T> f);
}

I iRef = … some implementation of iterface I …
iRef.map(s -> s.length()); // error: ambiguous //6

The compiler considers all four map methods as candidates for overload
resolution, which means that there are four different target types for the
lambda expression. In such a situation the type inference process fails
and the compiler reports an ambituity. In fact, the compiler already
complains about an ambiguity if there is more than one viable target type; it
does not even take four candidates; two overloaded methods suffice for
an ambiguity.

Target Typing 97

A Note on Language Design Decisions (Related to Type Inference)

You might wonder why the compiler isn't smart enough to avoid type
inference failure. The answer is: the compiler is smart enough; it was a
deliberate design decision to keep type inference simple - at the expense
of more frequent type inference failure.

More complex overload resolution schemes are conceivable that would
avoid type inference failure in situations like the one above. They were
discussed and even tentatively implemented during the design of
lambdas. In principle, the compiler can apply all kinds of magic in order
to come up with a most specific target among several viable candidates.
It could for instance take the return type into account, or the throws
clauses for that matter, or perform speculative strategies with
corresponding backtracking. All this can be done by a compiler, but it
was decided that the compiler should not do it. All experiments with
more sophisticated type inference and overload resolution schemes were
eventually discarded.

The language designers decided in favour of a relatively simple type
inference process (at the expense of more frequent type inference failure)
for two reasons: a) in order to keep type inference understandable for its
users and b) for more robust code.

Ad a) The more complex the type inference process is the more difficult
it is for its users to track it down. Even a more sophisticated type
inference scheme will occasionally fail. Failure will be rare, but it can still
happen. In case of type inference failure under a more complex scheme,
the programmer hardly has a chance to figure out a solution due to the
overall complexity. The designers wanted to avoid inexplicable magic
and decided to keep type inference comprehensible.

Ad b) Very sophisticated type inference schemes can produce britle code,
where a seemingly harmless modification of one piece of code can
change the result of type inference in another piece of code. It means
that a small change here can trigger invocation of another method there
(in a seemingly unrelated piece of code). Such unexpected side effects
are usually undesired and difficult to track down in presence of a
complex type inference scheme. The designers tried to eliminate
surprising side effects.

Coping With Type Inference Failure

Situations of type inference failure have two aspects: either you are the
user of a method that leads to the failure, or you are the designer of such a
method. Correspondingly, there are two strategies for tackling the
problem:

98 Target Typing

 User site workaround: Avoid type inference, e.g. use explicit lambdas or
method references.

 Declaration site workaround: Avoid overloading on functional interface
types, i.e. rename the overloaded methods.

Let us explore the workarounds using the example of an overloaded map
method and the lambda expression s->s.length().
use explicit lambdas

User Site Workarounds

The user of a potentially problematic API can avoid the type inference
failure by supplying more type information to the compiler. The user site
workaround for the example that we have been exploring earlier can look
like this:
interface I<T> {
 <R> R map(Function<T,R> f);
 int map(ToIntFunction<T> f);
 long map(ToLongFunction<T> f);
 double map(ToDoubleFunction<T> f);
}

I iRef = … some implementation of iterface I …
iRef.map((String s) -> s.length); // fine //1
iRef.map(String::length); // fine //2

iRef.map((Function<String,Integer>)s -> s.length());// fine //3
iRef.map((ToIntFunction<String>)s -> s.length()); // fine //4

ToLongFunction<String> mapper = s -> s.length(); // fine //5
iRef.map(mapper);

The idea is to reduce the need for type inference in the first place. Instead
of having the compiler infer the lambda's signature, we can support the
compiler by supplying type information explicitly. The resolutions above
all assume that the lambda expression s -> s.length() is supposed to
work on strings and uses the length method of class String.

The first workaround uses an explicit lambda expression (see //1) instead
of an implicit one. An explicit lambda expression has its argument types
explicitly specified so that the compiler need not infer them.

The solution in //2 does essentially the same: it uses the method reference
String::length, which has the signature (String)->int. Again, the
compiler need not infer the argument type because the method reference
already supplies it.

The approaches in //3 and //4 are the least attractive ones: they turn the
method invocation context into a cast context by casting the entire

Target Typing 99

lambda expression to an appropriate target type like
Function<String,Integer>, ToIntFunction<String>, or any other
compatible functional interface type.

The solution in //5 introduces a variable to which the lambda expression
is assigned. Thereby it turns the method invocation context into an
assignment context.

The first two solutions have in common that they describe the lambda
more precisely by supplying the lambda's argument type (explicitly in the
lambda expression and implicitly in the method reference).

The last three solutions have in common that they turn the problematic
poly context (invocation of an overloaded method) into a harmless poly
context (cast or assignment).

Application of the User Site Workarounds in Practice

Let us explore an example where the user site strategy described above is
needed. The Comparator interface from package java.util has five
overloaded versions of a comparing method. When calling the overloaded
method it is often best to use explicit lambdas (rather than implict ones)
in order to avoid the ambiguity error messages.

Here is an example using the comparing method:
List<String> strs = Arrays.asList("i","xzy","X","FF80A0");
strs.sort(Comparator.comparing(s->s.length())); // error
strs.sort(Comparator.comparing((String s)->s.length())); // fine
strs.sort(Comparator.comparing(String::length)); // fine
strs.sort(Comparator.comparing(
 (ToIntFunction<String>)s->s.length())); // fine
System.out.println(strs);

With an implicit lambda expression the invocations of the comparing
methods fails due to an ambiguity error message. With an explicit lambda
expression or a method reference the type inference succeeds.

Step-by-Step Elimination of Compilation Errors

However, in practice, matters can get rather tedious at times. In the
following we want to demonstrate a strategy for finding workarounds
even in more complex situations than the one above. We will walk you
step-by-step through the process of eliminating a compilation error.
Along the way we will explain why the compiler complains and will try out
various approaches for getting rid of the compiler messages.

Here is our case study (note that it does not yet compile):
List<String> strs = asList("ivn.txt", "Spam.pdf", …);

100 Target Typing

strs.sort(Comparator
 .comparing(s->{ int dot=s.lastIndexOf('.');
 return (dot>=0)?s.substring(dot):"";
 })
 .thenComparing(s -> s.length())
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))
);

Before we address the compilation error let us see what the code snippet
does. A list of strings is shall be sorted with a composed comparator that
sorts the strings first by their suffix, then by their length, and eventually
according to their string content ignoring upper/lower case differences.

For composing the comparator two methods from the Comparator
interface are used: the comparing method which has five overloaded
versions and the thenComparing method which has six overloaded
versions.

When we compile the code snippet then the compiler complains.
strs.sort(Comparator
 .comparing(s->{ int dot=s.lastIndexOf('.'); // error
 return (dot>=0)?s.substring(dot):"";
 })
 .thenComparing(s -> s.length())
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))
);

The compiler reports an ambiguity error for method comparing. Among
the five overloaded versions of the comparing method the compiler finds
four that are applicable, namely comparing(ToDoubleFunction),
comparing(ToLongFunction), comparing(ToIntFunction), and comparing
(Function). The fifth one is comparing(Function,Comparator); it is ruled
out because it takes two arguments and we clearly provided only one
argument. Note that the compiler does not take the return type into
account for overload resolution purposes in order to rule out the
ToDouble, ToLong, and ToInt versions. So far the compiler does not
even know that the lambda takes a String; how can it possibly know that
it returns String? Anyway, there is more than one applicable candidate
method and the compilation fails with an ambiguity message.

Let us fix it by passing an explicit lambda expression to the comparing
method:
strs.sort(Comparator
 .comparing((String s)->{ int dot=s.lastIndexOf('.'); // error
 return (dot>=0)?s.substring(dot):"";
 })
 .thenComparing(s -> s.length())
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))

Target Typing 101

);

It still does not compile. This time the compiler knows that the lambda
takes a String and returns a String and picks comparing(Function) as the
only applicable candidate among the five overloaded versions. This
overloaded version is a static generic method with two type variables.
Here is its declaration:
static <T,U extends Comparable<? super U>>
Comparator<T>
comparing(Function<? super T, ? extends U> keyExtractor)

For generic methods the compiler must infer the type parameters, i.e.
what T and U are supposed to be. It does so in two steps: by first taking a
look at the argument provided to the generic method and then taking the
context into account in which the generic method appears. The argument
provided to the generic comparing method is the keyExtractor, i.e. our
lambda expression, whose type the compiler does not yet fully know. The
context in which the generic comparing method appears does not help
either. The generic method appears as the receiver of the subsequent call
of method thenComparing, i.e. it appears on the left-hand side of the
method selection symbol '.'. This is not a valid type inference context
and does not provide any information. Ultimately, the compiler fails to
infer the two type parameters of the generic comparing method.

So, our next attempt could be to provide the missing type parameters (in
which case we need not specify the lambdas argument type any more):
strs.sort(Comparator
 .<String,String>comparing(// fine
 s->{ int dot=s.lastIndexOf('.');
 return (dot>=0)?s.substring(dot):"";
 })
 .thenComparing(s -> s.length()) // error
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))
);

An alternative is a cast that eliminates the need for type inference:
strs.sort(Comparator
 .comparing((Function<String,String>) // fine
 s->{ int dot=s.lastIndexOf('.');
 return (dot>=0)?s.substring(dot):"";
 })
 .thenComparing(s -> s.length()) // error
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))
);

Now the invocation of the comparing method compiles.

102 Target Typing

After solving the first problem, the compiler complains that the
invocation of thenComparing is ambiguous. Among the six overloaded
version the compiler considers four applicable, namely
thenComparing(ToDoubleFunction), thenComparing(ToLongFunction),
thenComparing(ToIntFunction), and thenComparing(Function). The fifth
overloaded version is thenComparing(Function,Comparator), which takes
two arguments. Since we provided only one argument the fifth version is
inapplicable. The sixth version is thenComparing(Comparator). A
Comparator takes two arguments, but we provided a lambda that takes
only one argument. This rules out the sixth version of thenComparing.

In the end, there is more than one applicable candidate method and the
compilation fails with an ambiguity message.

Let us fix it by passing an explicit lambda expression to the thenComparing
method:
strs.sort(Comparator
 .comparing((Function<String,String>)
 s->{ int dot=s.lastIndexOf('.');
 return (dot>=0)?s.substring(dot):"";
 })
 .thenComparing((String s) -> s.length()) // fine
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))
);

With this additional information the compiler picks thenComparing

(ToIntFunction<String>) as the best candidate. It is a non-generic
method, no furhter type inference is needed, and the problem is solved.

The last invocation of thenComparing does not create an ambiguity
because we supply a lambda with two arguments. The compiler picks
thenComparing(Comparator<String>) because it is the only candidate that
takes a function with two arguments.

Common Practice: Break Chains Down Into Single Steps

The strategy that we have been employing above for eliminating the
compilation errors requires some insight into the compiler's type inference
strategies. A more practical approach might be breaking a chain of
method calls down into single steps by introducing extra variables for the
arguments of each step. Basically, this strategy systematically eliminates
the need for type inference almost entirely by reducing it to relatively
simple assignment contexts. It works like this.

We would take the initial approach (that does not compile):
strs.sort(Comparator
 .comparing(s->{ int dot=s.lastIndexOf('.'); // error
 return (dot>=0)?s.substring(dot):"";

Target Typing 103

 })
 .thenComparing(s -> s.length())
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))
);

and would break it down into this:
Function<String,String> extractor1
 = s-> { int dot=s.lastIndexOf('.');
 return (dot>=0)?s.substring(dot):"";
 };
ToIntFunction<String> extractor2
 = s -> s.length();
Comparator<String> comparator
 = (s1,s2) -> s1.compareToIgnoreCase(s2);

strs.sort(Comparator
 .comparing (extractor1)
 .thenComparing(extractor2)
 .thenComparing(comparator)
);

Often, breaking down a chain of operations like this is only an
intermediate step for elimination of error messages. You might want to
use the insights gained by breaking the chain down for subsequent
insertion of casts. So, the ultimate result could look like this:
strs.sort(Comparator
 .comparing((Function<String,String>)
 s->{ int dot=s.lastIndexOf('.');
 return (dot>=0)?s.substring(dot):"";
 })
 .thenComparing((ToIntFunction<String>) s -> s.length())
 .thenComparing((Comparator<String>)
 (s1, s2) -> s1.compareToIgnoreCase(s2))
);

Of course, we can omit all casts that the compiler does not need and
would end up with a less cluttered code like this:
strs.sort(Comparator
 .comparing((Function<String,String>)
 s->{ int dot=s.lastIndexOf('.');
 return (dot>=0)?s.substring(dot):"";
 })
 .thenComparing((ToIntFunction<String>) s -> s.length())
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))
);

104 Target Typing

An Alternative: Using Method References Instead of Lambdas

A different approach that we have not yet considered is use of method
references instead of lambda expressions. Let us see what happens if we
use method references.

First, we define a helper method that replaces the lambda expression we
used to extract the suffix from each string.
class Utils {
 public static String getSuffix(String s) {
 int dot = s.lastIndexOf('.');
 return suffix = (dot>=0)?s.substring(dot):"";
 }
}

We use this helper method to replace all lambdas by method references.
Then our example looks like this:
strs.sort(Comparator
 .comparing(Utils::getSuffix)
 .thenComparing(String::length)
 .thenComparing(String::compareToIgnoreCase) // error
);

It almost compiles. The method references provide more information
than the implicit lambdas, which eliminates some of the ambiguities.
Only the reference to String::compareToIgnoreCase is considered
ambiguous. The problem can be solved by a cast:
strs.sort(Comparator
 .comparing(Utils::getSuffix)
 .thenComparing(String::length)
 .thenComparing((Comparator<String>)String::compareToIgnoreCase)
);

Ultimately, the most readable and concise notation is probably a
combination of the various approaches, for instance this one:
class Utils {
 public static String getSuffix(String s) {
 int dot = s.lastIndexOf('.');
 return suffix = (dot>=0)?s.substring(dot):"";
 }
}
strs.sort(Comparator
 .comparing(Utils::getSuffix)
 .thenComparing(String::length)
 .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2))
);

It is not cluttered by any cast and probably the most readable solution of
all.

Target Typing 105

Wrap-Up on User Site Workarounds for Type Inference Issues

If you run into type inference problems the resolution strategy is: provide
more type information. This can mean:

 use explicit lambdas instead of implicit ones, i.e. explicitly specify the
lambda's argument types;

 try out method references instead of lambda expressions; sometimes
it helps, sometimes it doesn't;

 add casts that specify the lambda's or method reference's intended
type;

 break down a chain of operations into single steps by introducing a
separate variable for each lambda expression / method reference.

avoid overloading on functional types

Declaration Site Workaround & API Design Considerations

In the previous section we discussed what a user of an API can do if he or
she faces compilations errors due to type inference failure. Avoiding type
inference errors is also a design issue that API designers must take into
account.

Type inference failure due to ambiguity of an overloaded method can be
avoided during API design already by refraining from overloading.

In order to illustrate the corresponding design option we re-visit the
example which we earlier used to illustrate the type inference failures
caused by overloaded methods.

Here is the example of an interface with overloaded map methods that
causes type inference problems:
interface I<T> {
 <R> R map(Function<T,R> f);
 int map(ToIntFunction<T> f);
 long map(ToLongFunction<T> f);
 double map(ToDoubleFunction<T> f);
}

I iRef = … some implementation of iterface I …
iRef.map(s -> s.length()); // error: ambiguous

The declaration site workaround for eliminating the compiler error
message could look like this:
interface I<T> {
 <R> R map(Function<T,R> f);
 int mapToInt(ToIntFunction<T> f);
 long mapToLong(ToLongFunction<T> f);
 double mapToDouble(ToDoubleFunction<T> f);

106 Target Typing

}

I iRef = … some implementation of iterface I …
iRef.map(s -> s.length); // fine

We simply rename the map methods and give each version a different
name. With the map methods renamed there is no overloading any longer
and the potential for ambiguities vanishes.

Is overloading evil?

This design approach bears the question whether overloading should be
generally avoided. After all, there is hardly ever a compelling need to use
the same method name repeatedly in the same API, except for
constructors perhaps. Can't and shouldn't we always use a different name
for each method?

The answer is: no, not every set of overloaded methods causes trouble.
The following properties render a set of overloaded methods problematic
in conjunction with type inference:

 the argument types are functional interface types, and

 the overloaded methods have the same number of arguments.

Or, conversely, a set of overloaded methods is substantially less likely to
cause type inference failures if all methods have a different number of
arguments and the argument types are not functional interface types.

The need for type inference is particularly pronounced for lambda
expressions and method references. These can only be supplied as
arguments to a method if the argument types are functional interface
types. Overloaded methods that do not take lambdas (or method
references) as arguments are mostly unproblematic.

Overload resolution is more likely to fail if several of the overloaded
versions have the same number of arguments. If the number of
arguments differs among the overloaded versions the compiler can easily
rule out inapplicable candidates: every method that has the wrong number
of arguments is eliminated from the candidate set. This way it is much
easier to reduce the candidate set to a single, unambiguous method.

Application of the User Site Workarounds in Practice

The design approach suggested above (distinguishing methods by name
rather than signature) can be found in JDK APIs. It is the approach that
was for instance taken for the Stream interface in package

Target Typing 107

java.util.stream. The Stream interface has several map methods with
different names (map, mapToInt, mapToLong, mapToDouble).

The downside of an API that does not use overloading is that the user
must be aware of the fact that there are several methods with different
names. In the case of the stream's map methods the user must know that
it is inefficient to use the map method instead of the more specific
mapToInt, mapToLong, and mapToDouble methods. The mapToPrimitive
methods avoid autoboxing, while the plain map method does box and
unbox primitive type values.

Here is an example using the map methods from interface Stream:
List<String> strs = Arrays.asList("i", "xzy", "X", "FF80A0");
int r;
r=strs.stream().mapToInt(String::length).sum(); //1
r=strs.stream().mapToLong(String::length).sum(); // error //2
r=strs.stream().map(String::length).sum(); // error //3
r=strs.stream().map(String::length).reduce(0,(i1,i2)->i1+i2); //4

The method reference String::length can be passed to all four map
methods. As String::length returns an int value, the mapToInt
operation is the most efficient one. It returns a primitive stream of type
IntStream. The mapToLong method does basically the same; it converts
the int return values of String::length to long values and returns a
LongStream. The map operation also works. It boxes the int return values
of String::length into Integers and creates a stream of boxed values of
type Stream<Integer>.

The different behaviour of the various map methods becomes visible when
the next operation in the chain is applied. The subsequent sum operation
works on an IntStream in //1; it calculates the sum as an int value. The
sum operation in //2 works on a LongStream; the sum therefore is a long
value, which cannot be assigned to the int variable r, which causes a
compile time error. In //3 the sum operation is called on a
Stream<Integer>; the regular, non-primitve streams do not have a sum
operation, which causes a compile time error. In //4 we calculate the sum
via the reduce operation, which is available for all stream types; it
calculates the sum from the boxed Integers and performs a lot of boxing
and unboxing along the way.

API Design Considerations

The example illustrates the downside of an API that refrains from using
overloaded methods: the user must decide which method to invoke and
might inadvertantly pick the least efficient one (like map instead of
mapToInt in the example).

108 Target Typing

On the other hand, the downside of an API that uses overloading is
occasional type inference failure due to ambiguities as discussed in the
previous section on "Problematic Poly Contexts".

One question remains: when should an API use overloading and when is
it better to refrain from overloading? To answer the question let us look
at the JDK.

We have seen examples for both design choices in the JDK. The Stream
interface does not overload, but has four map methods with four different
names. The Comparator interface does the opposite; it has five overloaded
comparing methods and six overloaded thenComparing methods.

The difference is that the map methods in interface Stream return different
types of streams, whereas the comparing methods in interface Comparator
all return a comparator of the same type. In this sense the comparing
methods have more similarities with each other than the map methods
have.

In addition, the various stream types returned from the four map methods
really make a difference: they have different APIs. For instance, the
primitive streams returned from the mapToPrimitive methods have a sum
operation, which does not exist in the regular Stream<T> returned from
the plain map method. For this reason it is sensible that the programmer
must make a deliberate decision regarding the map method rather than
leaving the decision to the compiler's overload resolution strategies.

In contrast, a deliberate decision regarding the comparing method is not
strictly necessary. All comparing methods return the same type of
Comparator and it does not make much of a difference which one is called.
Under these circumstances (plus considering the even higher number of
related methods) is deems sensible to use overloading instead of different
names.

Wrap-Up on Declaration Site Workarounds for Type Inference Issues

To avoid type inference failure is to some extent an API design issues.
An API that does not overload methods whose argument types are
functional interface types reduces the probability that its users will be
confronted with type inference failures. In other words, overloading
should be used carefully for method with functional argument types.

Infrequent Type Inference Issues

The following sections cover type inference issues that occur rarely in
practice. Feel free to skip these sections until you come across any of
these infrequent situations.

Target Typing 109

References to Overloaded Methods/Constructors

Method and constructor references refer to a name, not to a particular
signature (see e.g. the section on "Reference to Constructor"). If the
referenced method or constructor is overloaded the compiler must pick
from the set of overloaded methods/constructors the one that matches
the requirements of the poly context in which the method/constructor
reference appears. Naturally, the compiler can come to the conclusion
that there are several matching versions for a given context and may reject
the method/constructor reference as ambiguous. It is not a common
situation, but it may happen.

Here is an example of a class with two overloaded constructors:
class C {
 public C(CharSequence arg) { … }
 public C(Serializable arg) { … }
}

When we create a reference C::new to the overloaded constructor and the
constructor references appears in a context where both overloaded
versions would match, the compiler complains. Below is an example of a
context that leads to a compile-time error.

Example of an overloaded constructor reference in an assignment
context:
Function<? super String,C> f;
f = C::new; // error
f = (Function<CharSequence,C>)C::new; // fine
f = (Function<Serializable,C>)C::new; // fine

The compiler finds the constructor reference in an assignment context.
The target type is a wildcard parameterization of the functional interface
Function from package java.util.function. The two constructors have
the signatures (CharSequence)->C and (Serializable)->C. They are
compatible with the parameterizations Function<CharSequencer,C> and
Function<Serializable,C>, which is illustrated by the second and third
assignment that involve corresponding casts.

Despite of this compatibility, the first assignment fails. This is because
there is no type information regarding the signature of the constructor
reference C::new and the compiler must deduce all missing information
from the left-hand side target type. For this purpose the compiler first
replaces the wildcard ? super String used on the left-hand side target
type by its lower bound String. The resulting target type is
Function<String,C>. With this target type information the compiler goes
looking for a constructor in class C with one argument of type String.

110 Target Typing

Both overloaded constructors have a matching signature and the compiler
considers C::new an ambiguous constructor reference.

Overloaded methods can create similar problems when used in lambda
expressions. Here is the same example, this time using lambda
expressions instead of constructor references:
Function<? super String,C> f;
f = x -> new C(x); // error
f = (CharSequence x) -> new C(x); // fine
f = (Serializable x) -> new C(x); // fine

The compiler again considers Function<String> the target type and
complains that both constructor of class C accept String as the argument
type and are therefore ambiguous.

Wildcard Target Types Are the Norm

Part of the problem described above is due to the unspecific target type.
In the example the target type is a wildcard parameterization of a generic
type. Such a wildcard type stands for an entire family of types, not just
one specific type. This increases the chance that several candidates from
a set of overloaded methods meet the requirements.

When the target type is more specific, an ambiguity is less likely or does
not occur at all. For instance, the ambiguity vanishes if we assign the
overloaded constructor reference to a concrete parameterization instead
of a wildcard parameterization:
Function<Function<CharSequence,C> f1 = C::new; // fine
Function<Serializable,C>) f2 = C::new; // fine

Here the compiler can draw enough information from the target type in
order to rule out one of the two overloaded version as inapplicable for
this specific context. In essence, the more relaxed and unspecific the
target type is the more likely is an ambiguity error.

Unfortunately, wildcard parameterizations are fairly common in practice
as target types. For instance, almost all stream operations (and many
other JDK APIs) have wildcard argument types. As a result, the
unspecific wildcard target type is more of the norm rather than the
exception. Below is an example of an invocation context that leads to the
same ambiguity that we previously encountered in an assignment context.

Example of ambiguous constructor reference in an invocation context:
Arrays.asList("abc","xyz")
 .stream()
 .map(C::new) // error
 .forEach(System.out::println);

Target Typing 111

The reference C::new to the overloaded constructor from our previous
examples appears in a method invocation context, namely as the argument
to the stream's map operation. The map operation's declared argument type
is the wildcard type Function<? super T,? extends R>. In the given
context it boils down to the required target type Function<? super

String, ? extends Object>. This unspecific target type leads to the same
ambiguity error message that we discussed above in the assignment
context. Resolutions include casting the method reference or using a
different type of stream.

Solving the problem with a cast:
Arrays.asList("abc","xyz")
 .stream()
 .map((Function<CharSequence,C>)C::new)
 .forEach(System.out::println);

We can add the same cast that we've been using in the assignment context
and cast the constructor reference to Function<CharSequence,C>, which is
no longer a wildcard type, but a concrete parameterization of the generic
target type.

Alternatively, we can use a different stream type which alters the
invocation context so that the map method has a different required
argument type.

Solving the problem with an explicit type argument:
Arrays.<CharSequence>asList("abc","xyz")
 .stream()
 .map(C::new)
 .forEach(System.out::println);

We specify an explicit type argument for the generic asList method. This
has the effect that the asList method returns a List<CharSequence>
instead of a List<String>, which it returns without the explicit type
argument. The stream is then a Stream<CharSequence> and its map
operation has the declared argument type Function<? super

CharSequence,? extends Object>. With this type information the
compiler looks for a constructor that take CharSequence or a supertype
therof as an argument, which prunes the candidate set to a single,
unambiguous candidate.
target typing & wildcards target typing & generic target types

More on Wildcard Target Types

Diesen Teil vielleicht benutzen, um die Type Inference für Wildcard
Target Types zu erklären (Target Type is the Parameterization with the

112 Target Typing

Bound) - vielleicht kürzer und im regulären Abschnitt über Target
Typing. Und ein realistischeres Beispiel nehmen:

Functional interfaces can be generic and they may be implemented by
matching lambda expressions or method/constructor references. It
means that target types may be (concrete or wildcard) parameterizations
of generic types. Wildcard parameterization in particular can lead to type
inference failures

Here is an example of a generic functional interface:
@FunctionalInterface
interface Factory<T> {
 Generic<T> make();
}

The functional interface Factory has the descriptor <T>()->Generic<T>,
i.e., it has an unbounded type parameter, takes no arguments, does not
throw checked exceptions, and returns a parameterization of a generic
class named Generic.

Method/Constructor References & Wildcard Target Types

The generic Factory interface can be implemented by a constructor
reference that refers to the default constructor of class Generic:
Factory<?> f1 = Generic::new; //1
Factory<?> f2 = Generic<Object>::new; //2
Factory<?> f3 = Generic<String>::new; // error //3
Factory<?> f4 = (Factory<String>)Generic<String>::new; //4

The implementation of the generic functional interface Factory in line //1
is via the constructor reference Generic::new. Generic is a generic class
and for this reason the function descriptor of its constructor is generic,
namely <T>()->Generic<T>. Since we did not specify a type parameter
that would replace the unknown type T, the compiler must deduce the
type parameter. It does so by taking a look at the left-hand side of the
assignment. There it finds the wildcard parameterization Factory<?>,
which imposes no requirements regarding the type parameter, but also
does not provide any information for its inference. The compiler then
replaces the wildcard parameterization by a wildcard-free type for further
type deduction and decides that the target type shall be Factory<Object>.
(This is basically because the wildcard '?' does not have a bound;
bounded wildcards would be replaced by their bound in this step of the
type deduction.) The type Factory<Object> is a viable target type. It is
compatible to the left-hand type Factory<?> and the constructor reference
Generic::new can be converted to it.

Target Typing 113

Note, for the purpose of type inference the compiler treats the wildcard
parameterization Factory<?> like Factory<Object> (or the raw type
Factory for that matter).

The implementation in line //2 is via the constructor reference
Generic<Object>::new. This time the constructor reference is no longer
generic. Instead it has the function descriptor ()-> Generic<Object> and
can be converted to the target type Factory<Object>.

The implementation in line //3 is via the constructor reference
Generic<String>::new. Its function descriptor is ()-> Generic<String>
which can be converted to Factory<String>, but not to Factory<Object>.
Since the compiler treats the left-hand side type Factory<?> like
Factory<Object> for the purpose of target typing it issues an error
message.

In line //4 we inserted a cast to Factory<String> which changed the
inference context from an assignment context to a casting context. The
relevant target type is now Factory<String>. The constructor reference
Generic<String>::new has the function descriptor is ()->Generic<String>
which can be converted to the target type Factory<String>. Hence,
target typing works and line //4 compiles.

Lambda Expressions & Wildcard Target Types

Here are the same situations, this time using lambda expressions for
implementation of the wildcard target type:
Factory<?> f1 = ()->new Generic<>(); //1
Factory<?> f2 = ()->new Generic<Object>(); //2
Factory<?> f3 = (Factory<String>) ()->new Generic<Object>(); //3

These work exactly like the constructor reference above. For the first
lambda expression the compiler must infer the missing type parameter
and infers T:= Object. The second lambda expression already has the
matching function descriptor ()->Generic<Object>. The third lambda
expression is convertible to Factory<String> and requires an explicit cast.

Anonymous Inner Classes & Wildcard Target Types

Anonymous classes are treated differently regarding target typing. In
contrast to lambda expressions and method/constructor references, an
anonymous inner class definition is not a poly expression. It is a
standalone expression and the compiler need not infer its type from the
context.

Let us see how the generic target type would be implemented by
anonymous inner classes:

114 Target Typing

Factory<?> f1 = new Factory<>() { /*error*/ //1
 public Generic<Object> make() { return new Generic<>(); }
};
Factory<?> f2 = new Factory<Object>() { //2
 public Generic<Object> make() { return new Generic<>(); }
};
Factory<?> f3 = new Factory<String>() { //3
 public Generic<String> make() { return new Generic<>(); }
};

The first attempt in line //1ff is rejected by the compiler because the
diamond operator '<>' is not permitted for the supertype of an
anonymous inner class. The supertype must be fully specified and must
not require type inference.

The different treatment regarding type inference is also visible in the third
attempt in line //3ff where the anonymous class implements
Factory<String>. The corresponding implementations via a lambda
expression or a constructor reference did not compiler without an explicit
cast to Factory<String>. No such cast is needed for the anonymous class
because it is not subject to type inference.
target types with generic method

Target Types with a Generic Functional Method

Functional interfaces can have a single abstract method that is a generic
method. Implementing such a functional interface requires that the
implementation has a matching generic method. In principle, functional
interfaces can be implemented by classes, lambda expressions, and
method/ constructor references. The question is: can they provide a
matching implementation of the required generic method? The answer is:
classes and method/constructor reference can, but lambda expressions
cannot.7 Let us see why this is.

Here is an example of a functional interface with a generic method:
@FunctionalInterface
interface Factory {
 <T> Generic<T> make();
}

It uses a generic type named Generic that looks like this:
class Generic<X> {
 public Generic() { ... }
}

7 Functional interfaces whose single abstract method is generic have already been
mentioned in the section on "Generic Lambda Expressions Not Permitted".

Target Typing 115

The functional interface Factory itself is not generic, but its singe abstract
method is a generic method. The method's descriptor is <T>()->

Generic<T>, i.e., it has an unbounded type parameter, takes no arguments,
does not throw checked exceptions, and returns a parameterization of
Generic.

Here is how the target type can be implemented by a constructor
reference:
Factory f1 = Generic::new;
Factory f2 = Generic<?>::new; // error: illegal syntax
Factory f3 = Generic<Object>::new; // error: incompatible

The first implementation of the functional interface Factory is via the
constructor reference Generic::new. The compiler accepts it because it
yields a generic function. This is because Generic is a generic class and its
constructor's function descriptor is generic, namely <T>()->Generic<T>.

The second constructor reference Generic<?>::new is rejected because no
wildcard types are permitted before the '::' symbol of a method/
constructor reference.

The third constructor reference Generic<Object>::new is a legal one, but
it is incompatible to the target type Factory. The references
Generic<Object>::new has the non-generic descriptor ()->

Generic<Object>, while the generic descriptor <T>()->Generic<T> is
required.

Any attempt of implementing the target type Factory with its generic
abstract method by means of a lambda expression is doomed to fail. Java
does not support generic lambda expressions. In order illustrate the lack
of generic lambda expressions let us try write a generic lambda expression.

Here are a couple of attempts to implement the target type's generic
abstract method by a lambda expression:
Factory f1 = () -> new Generic<>(); // error: incompatible
Factory f2 = <T> () -> new Generic<T>(); // error: illegal syntax

The first lambda expression yields the non-generic function descriptor,
namely a function that takes no arguments, does not throw, and returns
some parameterization of Generic. It is incompatible to the generic
method that the target type Factory requires.

The second lambda expression is simply illegal. There is no syntax for
specification of type parameters for a lambda expression.

In essence, lambda expressions cannot implement functional interfaces
with a generic method.

116 Target Typing

Anonymous inner classes, of course, can implement functional interfaces
with a generic method. Here is an implementation of the target type by
an anonymous inner class:
Factory f1 = new Factory() {
 public <T> Generic<T> make() { return new Generic<T>(); }
};

Classes have no restrictions regarding the methods that they implement
and can easily provide a generic method if required.

Default and Static Inferface Methods 117

non-abstract interface method

Non-Abstract Methods in Interfaces
Traditionally, in Java all methods declared in an interface are abstract in the sense
that an interface method just describes the signature of a method, but does not
provide an implementation. The implementation has to be provided by a class
that implements the interface and overrides the abstract methods.

 Since Java 8, interface methods can be non-abstract, i.e., they can
provide an implementation. There are two types of non-abstract
interface methods:

 default methods, and

 static methods.

A default method is a method with the modifier default. Its body provides a
default implementation for any class that implements the interface without
overriding the method. This allows new functionality to be added to existing (and
perhaps already widely-distributed) interfaces without affecting any of the
implementing classes.

An interface may also declare static methods. They work in much the
same way as static methods in classes, except that they are not inherited.
They can only be invoked via the interface, not by means of a subtype or
an object.

An interface method that is neither default nor static is implicitly
abstract.
default methods

Default Interface Methods

Default methods were added to the Java programming language in Java 8 in order
to permit interface evolution.8 Many of the existing JDK abstraction underwent a
major overhaul for Java 8 and the library implementers had to modify these
existing and widely used JDK classes for Java 8. Without default interface
methods any modification of an existing interface had affected all implementing
classes, i.e., a backward compatible modification had been impossible. This lack
of support for interface evolution lead to the invention of default interface
methods.

8 This topic is also discussed in the Lambda Tutorial document (see the section on
"Interface Evolution" in the Lambda Tutorial document).

118 Default and Static Interface Methods

For illustration we study an example of an interface that has been extended in
JDK 8, namely the Comparator interface in package java.util. Before Java 8 it
looked like this:

The Comparator interface before Java 8:
public interface Comparator<T> {
 int compare(T o1, T o2);
 boolean equals(Object obj);
}

It has a compare method, which is an abstract method that subclasses must
implement. In addition it has an equals method, which is not an abstract
method, but a method inherited from class Object that subclasses need not
implement.

Since Java 8 the Comparator interface has additional non-abstract methods,
among them two default methods. They provide useful functionality
implemented on top of the abstract compare method such as creation of a
comparator for the reverse sorting order or composition of comparators.

Excerpt of the Comparator interface since Java 8:
public interface Comparator<T> {
 int compare(T t1, T t2);
 boolean equals(Object obj);
 default Comparator<T> reverseOrder() {
 return Collections.reverseOrder(this);
 }
 …
}

The other default method is the thenComparing method that exists in half a
dozen overloaded versions.

Default methods are qualified by the modifier default and are implicitly public.
A default method must have a body with an implementation. For the
implementation of the reversOrder method the original comparator is used -
referred to via the this keyword.

Here is an example of using the reverse comparator:
void testComparator() {
 String[] array = {"a", "b", "c"};
 Comparator<String> cmp = (x,y)-> x.compareTo(y);
 Arrays.sort(array,cmp);
 System.out.println(Arrays.toString(array));
 Arrays.sort(array,cmp.reverseOrder());
 System.out.println(Arrays.toString(array));
}

The resulting output is:
[a, b, c]

Default and Static Inferface Methods 119

[c, b, a]

For implementation of the default method reverseOrder we used the this
reference and a static method from an unrelated class, namely the
reverseOrder method from class Collections. For providing an
implementation of a default method we can also use all the arguments
passed to the method, if any, and all other methods defined in the
interface. This is illustrated by the thenComparing method defined in the
Comparator interface.

A more complete excerpt of the Comparator interface since Java 8:
public interface Comparator<T> {
 int compare(T t1, T t2);
 boolean equals(Object obj);
 default Comparator<T> reverseOrder() {
 return Collections.reverseOrder(this);
 }
 default
 Comparator<T> thenComparing(Comparator<? super T> other) {
 Objects.requireNonNull(other);
 return (Comparator<T> & Serializable) (c1, c2) -> {
 int res = compare(c1, c2);
 return (res != 0) ? res : other.compare(c1, c2);
 };
 }
 …
}

It uses the abstract compare method for its implementation.

Basically, a default interface method is implemented on top of the rest of
the interface, i.e., by means of the abstract and non-abstract methods
defined in the interface. A default method typically provides functionality
that is a combination or adaptation of the abstract interface methods.

One restriction (compared to non-abstract methods in classes) remains:
interfaces still do not have data. Interfaces may define constants, i.e., final
fields with compile-time constant values, but interfaces must not define
regular, mutable, non-final fields (like a class may do).
accessibility of default methods

Modifiers - Permitted and Prohibited

Default interface methods are implicitly public; they can neither be
protected, private, nor package visible. There is no compelling reason
for this restriction regarding the accessiblity modifiers. Non-public
accessibility is rarely needed and there were simply more important issues
to care about. It is, however, conceivable that future versions of Java may
allow the full set of accessiblity modifiers.

120 Default and Static Interface Methods

Default interface methods must not be abstract, which is obvious since a
default method is expressly meant to be overridden by a subclass.

Default interface methods must not be static. This, too, is sensible
because default interface methods are non-static methods that are
inherited into subtypes and may be overridded by subclasses.
final default methods

Default interface methods must not be final. There are two reasons for
this. The first reason is that is was expressly intended that default
interface methods should be overridable. Every subclass should be
allowed to provide an alternative implementation for the default
implementation offered by the interface.

The second reason is interface evolution. When a default method is
added to an interface then it might have the same name as an existing
method in an existing class that already implements the interface. If the
additional interface method is non-final then the existing class method
simply overrides the default interface method and no harm is done. If, in
contrast, the default interface method were final, then the existing class
would no longer compile because it illegally attempts to override a final
method. So, for reasons of backward compatibility a default interface
method cannot be declared final.
multiple inheritance

Multiple Inheritance

In the initial design of the Java language, interfaces were intended for the
abstract description of a concept, i.e., they had no data and no
functionality. Since Java 8 interfaces can have default methods and for
this reason can provide pieces of implementation, which begs the
question whether interfaces are pure API descriptions any longer.

An interface with default methods clearly does not meet the criteria of a
pure API description any longer because it does have functionality. Is it a
problem?

The answer to this question is related to multiple inheritance, which is a language
feature that was deliberately restricted in Java to multiple inheritance of (purely
abstract) interfaces. When Java was invented, multiple inheritance in general was
considered "to bring more grief than benefit".9 For this reason, the language
designers allowed multiple inheritance only for interfaces and restricted it to single
inheritance for classes.

9 Quoted from "Java: an Overview" by James Gosling, February 1995,
http://www.cs.dartmouth.edu/~mckeeman/cs118/references/OriginalJavaWhitepaper.p
df.

Default and Static Inferface Methods 121

deadly diamond of death

The Deadly Diamond of Death

The misgivings regarding multiple inheritance stem from programming
languages that do have multiple inheritance of classes, most prominently
C++. The problem of multiple inheritance occurs with a diamond shaped
inheritance, sometimes refer to the deadly diamond of death. It is a situation
where two types B and C are subtypes of another type A and then there is
a type D that is a subtype of both type B and C.

Diagram: Multiple Inheritance - The "deadly diamond of death"

Exactly this type of multiple inheritance causes trouble, if type A has state. A's
state is inherited by its subtypes. An obvious question pops up: does D have one
or two A-parts? After all, B inherits an A-part and C inherits an A-part. Should
D then have two A-parts? Or perhaps just one? The C++ programming
language permits the diamond shaped multiple inheritance among classes with
data members and, to boot, offers both choices: it has virtual and non-virtual
multiple inheritance, which leaves the decision regarding one or tow A-parts to
the programmer. Making this decision already creates headache. Then there is
the issue of "Who initializes the A-part, if there is only one A-part? B, C, or D?"
Plus, there are tons of ambiguities with multiple inheritance. For instance, what
does it mean if A, B, and C have a overlapping methods with the same name and
signature and we invoke the method on a reference of type D? How does the
compiler resolve the method call?
peril of multiple inheritance

Fortunately, the most nasty multiple inheritance situation, namely the
"deadly diamond of death" illustrated above is no issue in Java, not even
with default methods in Java 8. Java remains restricted to single
inheritance of classes and permits multiple inheritance only for interfaces.
For this reason, type A in the diamond shaped inheritance must be an
interface in Java; it cannot be a class. This is because type D is derived
from type B and C. A subclass (like D) can only have one direct
superclass, i.e., at most one of the two types B or C can be class; the other
one must be an interface. Because type A is the supertype of at an
interface (either B and/or C) it must be an interface, too.

If type A in "deadly diamond of death" is an interface then there is no
question regarding how many A-parts type D will have. Type A does not

122 Default and Static Interface Methods

have state and hence there is no such thing as an A-part neither in B, C, or
D.
programming with default methods

Programming with Default Methods

Default methods were invented primarily for interface evolution, namely
painless extension of interfaces that already have implementing subclasses.
In practice, default methods can be used for many other things. They
have the potential for changing the way in which we go about developing
APIs.

Traditionally, we go about the business of developing an API in several steps:

 Step 1: Interfaces. First, we describe a new API as a pure abstraction by
defining an interface without any implementations.

 Step 2: Abstract Classes. In a subsequent step we provide partial
implementations of the interface.

 Step 3: Concrete Classes. Of these abstract classes we derive further classes that
eventually are complete and no longer abstract.

Now, that we have default methods we still describe a new API by declaring a
bunch of interface methods without any implementation. But the immediate
next step might be definition of default methods that combine the yet abstract
interface methods to useful additional functionality. Only then would we start
providing actual implementations in terms of abstract and concrete classes. This
way, part of what we used to do in step 2 now becomes part of step 1.

Since Java 8, we may choose to develop an API this way:

 Step 1a: Abstract Interface Methods. First, we describe a new API as a pure
abstraction by defining an interface without any implementations.

 Step 1b: Default Interface Methods. Then, we add default methods that are
defined on top of the abstract interface methods.

 Step 2: Abstract Classes. In a subsequent step we provide implementations for
some of the abstract interface methods in a (potentially abstract) subclass.

 Step 3: Concrete Classes. Of these abstract classes we derive further classes that
eventually are complete and no longer abstract.

Let us explore a couple of examples of the usefulness of default methods.

Example #1: Genuine Default Functionality

The Iterator interface from package java.util requires three methods:
hasNext, next, and remove. In many iterator implementations the remove

Default and Static Inferface Methods 123

method does not make sense and remains unsupported. Yet, the
implementing class must provide an implementation of the remove
method. Usually it just throws an UnsupportedOperationException.

Since Java 8 the Iterator interface has a default implementation of the
remove method. Here is an excerpt of the Iterator interface:
public interface Iterator<E> {
 boolean hasNext();
 E next();
 default void remove() {
 throw new UnsupportedOperationException("remove");
 }
 …
}

In this example the default method is used to provide an actual default. It
frees subclasses from the burden of implementing an abstract interface
method that thay do not intend to support.

Example #2: Orthogonal Functionality

Consider the Comsumer interface in package java.util.function of the JDK.
It is the interface that is used in conjunction with the stream's forEach method.
It declares a single accept method. On top of this not yet implemented accept
method one can already provide useful functionality such as creating a chain of
two consumers.
@FunctionalInterface
public interface Consumer<T> {
 public void accept(T t);

 public default Consumer<T> andThen(Consumer<? super T> other){
 return (T t) -> { accept(t); other.accept(t); };
 }
}

Here is an example of using a chain of consumers for printing the elements of a
sequence to two output channels:
String[] names = {"Eric", "Emma", "Eleanor"};
Arrays.stream(names).forEach(
 ((Consumer<String>)System.out::println)
 .andThen(System.err::println)
);

The forEach method then prints the strings to both System.out and
System.err in one pass over the sequence.

In this example the default method is used to provide an orthogonal, additional
piece of functionality, namely a factory for creation of a new Consumer.

124 Default and Static Interface Methods

Example #3: Convenience Functionality

The Stream interface, too, illustrates how helpful default methods can be. Similar
to the Collection interface the Stream interface has two toArray methods:
public interface Collection<E> {
 ...
 <T> T[] toArray(T[] a);
 Object[] toArray();
 ...
}

public interface Stream<T> {
 <A> A[] toArray(IntFunction<A[]> generator);

 default Object[] toArray() {
 IntFunction<T[]> generator = s -> (T[]) new Object[s];
 return toArray(generator);
 }
}

While the Collection interface forces each implementing class to implement
both toArray methods the Stream interface requires only one implementation
and supplies the second toArray method as a default method implemented
based on the first one.

In this example the default method is used to provide a convenience method that
is a slight variation of an existing method. This is different from the previous
example where the default method provided orthogonal functionality.

Example #4: Adapter Functionality

Default methods can be used for retrofitting. Remember the Enumeration
interface that came as part of JDK 1.0 and is for instance used by class Vector. It
was later superseded in Java 1.2 by the Iterator interface. The enumeration is
similar to an iterator, but its methods have different names. With default
methods it is easy to have the Enumeration interface extend the Iterator
interface.
interface Enumeration<E> extends Iterator<E> {
 boolean hasMoreElements();
 E nextElement();

 default boolean hasNext() { return hasMoreElements(); }
 default E next() { return nextElement(); }
 default void remove() { throw new
 UnsupportedOperationException();
 }
}

With this simple extension of the Enumeration interface, every enumeration
could serve as an iterator. The retrofitting suggested above is a hypothetical one.

Default and Static Inferface Methods 125

The JDK does not provide this kind retrofitting because it is not needed. Class
Vector itself was retrofitted and implements both the Enumeration and the
Iterator interface. However, the enhanced Enumeration interface illustrates
how default methods can be used for adaptations and retrofittings.

In this example the default methods serve as an adapter that maps the methods
of one interface to the methods of another interface.

Example #5: Distinction From (Abstract) Classes

Now that interfaces can supply functionality in form of default methods, do we
still need abstract classes or are they obsolete? It turns out that (abstract) classes
are still needed. Let us take a look at a situation in which interfaces do not suffice
to solve a given problem.

Consider the following interface:
interface Name {
 String getFirstName();
 String getMiddleName();
 String getLastName();
}

and its implementing class:
class NamedPerson implements Name {
 private String firstName;
 private String middleName;
 private String lastName;

 public NamedPerson(String first, String middle, String last) {
 firstName = first;
 middleName = middle;
 lastName = last;
 }
 public String getFirstName() {
 return firstName;
 }
 public String getMiddleName() {
 return middleName;
 }
 public String getLastName() {
 return lastName;
 }
 public String getName() {
 return firstName
 +(middleName!=null&&middleName.length()>0?
 " "+middleName.charAt(0)+'.':"")
 +" "+lastName;
 }
 public String toString() {
 return String.format("%-12s= %s\n%-12s= %s\n%-12s= %s"
 ,"firstName" ,firstName
 ,"middleName",middleName

126 Default and Static Interface Methods

 ,"lastName" ,lastName
);
 }
}

This is how we would split the API into an interface and a class traditionally, i.e.,
without default method. Using default methods we can provide the getName
method in the interface already, because it is a mere convenience method that can
be implemented on top of the three abstract interface methods.

After moving the getName method from the class to the interface it looks like
this:
interface Name {
 String getFirstName();
 String getMiddleName();
 String getLastName();

 default String getName() {
 return getFirstName()
 +((getMiddleName()!=null&&getMiddleName().length()>0)?
 " "+getMiddleName().charAt(0)+'.':"")
 +" "+getLastName();
 }
}

class NamedPerson implements Name {
 private String firstName;
 private String middleName;
 private String lastName;

 public NamedPerson(String first, String middle, String last) {
 firstName = first;
 middleName = middle;
 lastName = last;
 }
 public String getFirstName() {
 return firstName;
 }
 public String getMiddleName() {
 return middleName;
 }
 public String getLastName() {
 return lastName;
 }
 public String toString() {
 return String.format("%-12s= %s\n%-12s= %s\n%-12s= %s"
 ,"firstName" ,firstName
 ,"middleName",middleName
 ,"lastName" ,lastName
);
 }
}

Default and Static Inferface Methods 127

Basically, we can implement all methods as default interface method that can be
built on top of the abstract inferface methods.

Following this line of logic one might want to implement the toString method
as a default interface method, too. This, however, is not permitted, because
toString already has an implementation in the Object superclass. Any class that
implements the Name interface would inherit two implementations of the
toString method. The method defined in class Object would always win and
the default interface method would always be ignored. In other words, defining a
default interface method toString in an interface is pointless and for this reason
prevented by the compiler right away.10

The three getter methods cannot be implemented as default interface method
because they need access to data and interfaces cannot store data. This means
that all methods that need access to data stored in fields must be implemented as
class methods.

The example illustrates that default method allow implementation of methods
that need no data and are typically combinations of the abstract interface
methods. All methods that need data access must be implemented in abstract or
concrete classes.
ambiguous default methods

Ambiguities Involving Default Interface Methods

As both interfaces and classes supply non-abstract methods to their
subclasses, the same method can be inherited from different supertypes.
This can lead to conflicts. For illustration, here are a couple of ambiguity
examples:

Ambiguity #1:

A class C2 inherits a method foo from both an interface I and a class C1. Which
method does subclass C2 inherit?

Example: Ambiguous Multiple Inheritance - Class wins over interface.

10 More on conflicts and ambiguities caused by default interface methods can be found in
the section on "Ambiguities Involving Default Interface Methods" and "Ambuity #7" in
particular.

128 Default and Static Interface Methods

interface I {
 default void foo() {...}
}
class C1 implements I {
 public void foo() {...}
}
class C2 extends C1 {}

The simple rule is: the class wins. The foo method present in subclass C2
is the one inherited from superclass C1. This behaviour reflects the idea
of default methods: default methods are a fallback if the class hierarchy
doesn't provide anything.

Ambiguity #2:

A class C inherits a method foo from an interface I1 which inherits the same
method foo from its superinterface I2. Which method does class C inherit?

Example: Ambiguous Multiple Inheritance - Closest super interface wins.

interface I1 {
 default void foo() { ... }
}
interface I2 extends I1 {
 default void foo() { ... }
}
class C implements I2 {}

The rule is: the closest super interface wins. The foo method present in
subclass C is the one inherited from interface I2.

Ambiguity #3:

A class C inherits a method foo from both an interface I1 and an interface I2.
This time the two interfaces are not derived from each other and there is no
closest interface. Which method does class C inherit?

Example: Ambiguous Multiple Inheritance - Compile-time error; needs
explicit resolution.
interface I1 {
 default void foo() { ... }
}
interface I2 {
 default void foo() { ... }

Default and Static Inferface Methods 129

}
class C implements I1, I2 {} // error

The compiler cannot resolve it and reports an error. The situation can be
resolved by explicitly stating which method class C is supposed to inherit. A
resolution could look like this:

Example: Disambiguation via interface.super in a subclass.
interface I1 {
 default void foo() { … }
}
interface I2 {
 default void foo() { … }
}
class C implements I1, I2 {
 public void foo() {
 I2.super.foo();
 }
}

The method invocation via interface.super is not restricted to methods of
classes; it can also be used in default methods of interfaces. Here is an example:

Example: Disambiguation via interface.super in an subinterface.
interface I1 {
 default void f() { … }
}
interface I2 {
 default void f() { …}
}
interface I3 extends I1, I2 {

130 Default and Static Interface Methods

 default void f() {
 I1.super.f();
 }
}

Ambiguity #4:

A class C inherits a method foo from both an interface I1 and an interface I2.
The method is abstract in one interface and has a default implementaion in the
other interface. Is method foo abstract or default in class C?

Example: Ambiguous Multiple Inheritance - Compiler-time error; needs
explicit resolution.
interface I1 {
 default void foo()
 { ... }
}
interface I2
{ void foo(); }
class C implements I1, I2
{} // error

The compiler cannot resolve it and reports an error. The situation can be
resolved by explicitly declaring the method as abstract or by implementing it. A
resolution would look like this:
class C implements I1, I2 {
 public void foo() { I2.super.foo(); }
}

or like this:
abstract class C implements I1, I2 {
 public abstract void foo();
}

Ambiguity #5:

A class C inherits from an super-interface I2 which inherits from a super-super-
interface I1. The topmost interface I1 has a default version of a method foo.
The direct interface I2 declares the same method foo as abstract. Class C inherits
the closest version of method foo, which is the abstract one from interface I2.
What if class C wants to use the grandparents default method?

The following is illegal because the interface preceding the super keyword must
be a direct superinterface.

Example: No access to super-super-interface's default method.
interface I1 {
 default void foo() { ... }

Default and Static Inferface Methods 131

}
interface I2 extends I1 {
 void foo();
}
class C implements I2 {
 public void foo() {
 I1.super.foo(); // error
 }
}

It is illegal to skip the direct interface. The following is illegal, too. It is the
attempt to get access to the super-super-interface's default method by simply
repeating it as direct interface.

Example: Cannot skip direct interface.
interface I1 {
 default void foo() { ... }
}
interface I2 extends I1 {
 void foo();
}
class C implements I1, I2 {
 public void foo() {
 I1.super.foo(); // error
 }
}

132 Default and Static Interface Methods

As a work-around we can define an additional interface as a helper that exposes
the desired behaviour with a super method invocation. Here is the helper
interface:

Example: Work around via helper interface.
interface I1 {
 default void foo() { ... }
}
interface I2 extends I1 {
 void foo();
}
interface I1H extends I1 {
 default void foo() {
 I1.super.foo();
 }
}
class C implements I1H, I2 {
 public void foo() {
 I1H.super.foo(); // fine
 }
}

Ambiguity #6:

A class C inherits a method foo from both two interfaces I2 and I3 that share a
common ancestor I1. One of the direct superinterfaces overrides the method,
the other does not. . Which method does class C inherit?

Example: Ambiguous Multiple Inheritance - The closest method wins.

Default and Static Inferface Methods 133

interface I1 {
 default void foo() { ... }
}
interface I2 extends I2 {
 default void foo() { ... }
}

interface I3 extends I1 {
 void foo();
}
class C implements I2, I3 {}

Again, the closest method wins. Methods (like I1::foo) that are already
overridden by other candidates (by I2::foo in the example) are ignored.

Ambuity #7:

An interface defines methods from class Object as default methods. For
instance, an interface might attempt to provide default implementations
of the hashCode, equals, or toString method.

Example: Default Methods for Public Methods from Class Object
interface I {
 default String toString() { … } // error
 default boolean equals(Object other) { … } // error
 default int hashCode() { … } // error
}

Providing default interface methods that collide with public methods
from class Object is not permitted. The reason is that a class that
implements the interface would inherit two versions of the method, the
one implemented in class Object and the one implemented in the
interface. The method from class Object would always win (see
Ambiguity #1). Hence it is pointless to provide default implementations
of hashCode, equals, or toString and the compiler prevents it right away.

134 Default and Static Interface Methods

It is permitted to provide a default implementation of the clone method from
class Object. It is, however, debatable.

Example: Default Method for Protected clone Method from Class Object
interface I extends Cloneable {
 default I clone() { … }
}
class C implements I { … } // error

The compiler rejects class C because it inherits the protected clone method from
class Object and the public default method from interface I. Since the class's
method wins it is an attempti to assign weaker access privileges to the clone
method: it was public in a supertype (interface I) and is now protected in class C.

All classes can, of course, override the interface's default clone method, which
renders the default implementation entirely pointless. Interestingly, an overriding
method in the class can refer to the default method defined in the interface.

Example: Default Implementation of clone is Overridden and Used:
interface I extends Cloneable {
 default I clone() { … }
}
class C implements I {
 return (C)I.super.clone();
}

Default and Static Inferface Methods 135

The approach is debatable though. It is hard to imagine that the interface can
provide a reasonable default implementation of a clone method. Cloning is
usually about copying data stored in the instance fields and the interface does not
have access to any instance field. Situations where a default clone method in an
interface is useful will probably be rare.

The list presented here of examples of ambiguous multiple inheritance is
by no means comprehensive. Many more ambiguities can occur. In
practice they are harmless. There is a resolution rule for most situations
and in those few cases where the compiler cannot resolve the ambiguity
there is syntax for explicit resolution.
static inferface methods

Static Interface Methods

Since Java 8, interfaces may define static methods. Like default methods
they must have an implementation. Static methods were added to the
language because occasionally an interface is the most appropriate place to
declare methods that produce or manipulate objects of the interface type.

Here is an example of an interface with a static method. It is the Predicate
interface from package java.util.function:

Example of a static interface method:
@FunctionalInterface
public interface Predicate<T> {
 boolean test(T t);
 static <T> Predicate<T> isEqual(Object targetRef) {
 return (null == targetRef)
 ? Objects::isNull
 : object -> targetRef.equals(object);
 }
 …
}

The static interface method isEqual is a factory method that creates a new
predicate which yields true if the tested value is equal to a particular value. Here
is an example of using it:
Predicate<Integer> isFive = Predicate.isEqual(5);
Stream.of(0,1,2,3,4,5,6,7,8,9)
 .filter(isFive)
 .forEach(System.out::println);

In the example we create a predicate names isFive that test whether a value is
equals to 5.
difference static / default method

136 Default and Static Interface Methods

Static vs. Default Interface Methods

How do default interface methods differ from static interface methods?
Both are non-abstract and have implementations. The difference is that
default methods can access all members of the interface whereas static
methods may only access static members. Also, a default method in a
generic interface has access to the interface's type variables whereas a
static method has no access to the type variables. It is exactly the same
distinction as between static and non-static methods in classes.

The Predicate interface illustrates the difference. It has default methods
in addition to the abstract and static method.
@FunctionalInterface
public interface Predicate<T> {
 boolean test(T t);

 static <T> Predicate<T> isEqual(Object targetRef) {
 return (null == targetRef)
 ? Objects::isNull
 : object -> targetRef.equals(object);
 }
 default Predicate<T> negate() {
 return (t) -> !test(t);
 }
 default Predicate<T> and(Predicate<? super T> other) {
 Objects.requireNonNull(other);
 return (t) -> test(t) && other.test(t);
 }
 default Predicate<T> or(Predicate<? super T> other) {
 Objects.requireNonNull(other);
 return (t) -> test(t) || other.test(t);
 }
}

The static method isEqual does not invoke any of the interface's
methods; in particular it does not access any non-static members of the
Predicate interface. In contrast, the default method negate calls the
abstract method test. It must be non-static.

The default method negate is a factory method, too. Here is an example of
using it:
Predicate<Integer> isNotFive = isFive.negate();
Stream.of(0,1,2,3,4,5,6,7,8,9)
 .filter(isNotFive)
 .forEach(System.out::println);

The default method negate creates a new predicate that is an adapter of
an existing predicate. It yields true when the adaptee returns false and
false when the adaptee returns true.

Default and Static Inferface Methods 137

More generally, static interface methods can invoke other static interface
methods and have access to compile-time constant fields defined in the
interface, but they cannot call abstract and default methods. Here is an
example:
interface I {
 int CONSTANT = 42;
 abstract void abstractMethod();
 default void defaultMethod1() {}
 static void staticMethod1() {}

 default void defaultMethod2() {
 int i = CONSTANT;
 abstractMethod();
 defaultMethod1();
 staticMethod1();
 }
 static void staticMethod2() {
 int i = CONSTANT;
 abstractMethod(); // error
 defaultMethod1(); // error
 staticMethod1();
 }
}

The access to constant values is because they are implicity public, static,
and final. Abstract and default methods, in contrast, are implicitly
public.

Similarly, static interface methods have no access to type variables of the
enclosing interface, but they do have access to nested types. Here is an
example:
interface I<T> {
 interface NestedInterface {}
 class NestedClass {}
 enum NestedEnum {ENUM}

 default void defaultMethod() {
 T t;
 NestedInterface x;
 NestedClass y = new NestedClass();
 NestedEnum z = NestedEnum.ENUM;
 }
 static void staticMethod() {
 T t; // error
 NestedInterface x;
 NestedClass y = new NestedClass();
 NestedEnum z = NestedEnum.ENUM;
 }
}

Again, this is because nested types defined in an interface are implicitly
static.

138 Default and Static Interface Methods

accessibility of static interface methods

Modifiers - Permitted and Prohibited

Static interface methods are implicitly public; they can neither be declared
protected, nor private, nor package visible. There is no compelling
reason for this restriction regarding the accessiblity modifiers. Non-public
accessibility is rarely needed and there were simply more important issues
to care about. It is, however, conceivable that future versions of Java may
allow the full set of accessiblity modifiers.

Static interface methods must not be abstract. This is in line with the
same rule for static class methods.

Static interface methods must not be qualified as default method.
Default methods are meant as non-static methods. The combination of
the modifiers static and default is illegal.

Static interface methods must not be final. This is different from static
methods in classes. For a static class method the final qualifier prevents
redefinition of the method in a subclass. For a static interface method the
final qualification is not needed because static interface methods cannot
be overridden; they must be invoked via their exact type - as we will see in
the next section.
difference static interface / class methods

Static Interface vs. Static Class Methods

We can implement static methods in interfaces and we can implement static
methods in classes. How do they differ?

Static interface methods differ from static class method in three aspects:

 They cannot be invoked via an instance.
 They can only be invoked via the interface type in which they are

declared.
 They are not inherited.

A static class method can be invoked either using the class name or using a
reference to an object. A static interface method must be called via the interface
name; using an object reference is not allowed for invocation of a static interface
method. Here is an example:
interface I {
 public static void f() { … }
}
class C implements I {
 public static void f() { … }
}

Default and Static Inferface Methods 139

public static void main(String... args) {
 I ir = new C();
 C cr = new C();
 ir.f(); // error
 cr.f(); // fine
 I.f();
 C.f();
}

The example shows that the static interface method cannot be called using an
object reference.

A static class method can be invoked via the class type in which the static method
is defined or via any subclass thereof. A static interface method must be called via
the interface type in which the static method is defined; using a subtype for for
invocation of a static interface method is not permitted. Here is an example:
interface I1 {
 public static void f() { … }
}
interface I2 extends I1 {
}
class C1 implements I2 {
 public static void f() { … }
}
class C2 extends C1 implements I2 {
}

public static void main(String... args) {
 I1 ir1 = new C2();
 I2 ir2 = new C2();
 C1 cr1 = new C2();
 C2 cr2 = new C2();
 I1.f();
 I2.f(); // error
 C1.f();
 C2.f(); // fine
}

The example illustrates that a derived interface cannot be used for
invocation of a static interface method. Essentially it means that static
class methods are inherited, but static interface methods are not.

Static Import for Interface Methods

Static interface methods can be imported. There is no difference
compared to static class methods. Here is an example:
package package1;
public interface I {
 public static void f() { … }
}
class C implements I {
 public static void g() { … }

140 Default and Static Interface Methods

}

package package2;

import static package1.I.*;
import static package1.C.*;

public static void main(String... args) {
 f();
 g();
}

Note that a static class method with out an accessibility qualifier cannot
be imported because it is only package visible, whereas a static interface
method without an accessibility qualifier is public by default and can be
imported.
inheritance of static interface methods

Inheritance of Static Methods

Static methods in interfaces look like static methods in classes and work in
much the same way, except that they are not inherited. Inheritance of
static interface methods is deliberately disallowed in order to prevent that
modification of an interface by adding a static method breaks the code of
existing subclasses. In general, the goal is that non-abstract methods (i.e.
static and default methods) can be added to an interface without affecting
the interface's subclasses.

This is different for static methods in classes. It has never been a goal to prevent
that modification of a superclass has no effect on its subclasses. For this reason
inheritance of static class methods is permitted and it is accepted that adding a
static method to a superclass can break the subclasses' code.

For illustration of the difference between inheritance of static methods in
interfaces and classes we will study two type hierarchies in which we will modify
the topmost supertype by adding a static method. First the topmost supertype is
a class. Then we consider a situation where the topmost supertype is an interface.

First we consider an example with classes. Here is the initial class hierarchy:
interface SuperInterface {
}
class SuperSuperClass {
}
class SuperClass extends SuperSuperClass
 implements SuperInterface {
 public static void method(SuperClass arg) { ... }
}
class SubClass extends SuperClass {
}

When we invoke the method as follows:

Default and Static Inferface Methods 141

SuperClass.method(new SubClass());
 // calls SuperClass::method(SuperClass)

the expected happens: the SuperClass's method is invoked and its argument of
type SubClass is converted to the required parameter type SuperClass.

Now we modify the superclass and add a static method with the same name but a
different argument type to the SuperSuperClass.
interface SuperInterface {
}
class SuperSuperClass {
 public static void method(SubClass arg) { ... }
}
class SuperClass extends SuperSuperClass
 implements SuperInterface {
 public static void method(SuperClass arg) { ... }
}
class SubClass extends SuperClass {
}

We do not change the method invocation; it is exactly the same as above:
SuperClass.method(new SubClass());
 // now calls SuperSuperClass::method(SubClass) !!!

Yet another method is called, namely the new one from the SuperSuperClass
whose declared parameter type perfectly matches the argument type so that no
conversion is required.

This perhaps unexpected effect occurs because static methods in classes are
inherited. After adding a static method to the superclass the compiler can choose
between two candidate methods and picks the better match. The same would
happen if static methods in interfaces were inherited. Adding a static method to
an interface could silently change the meaning of existing code. Since default and
static interface methods were intended for interface evolution, any side effects on
existing code is undesired and for this reason static interface method are not
inherited.

In order to see the difference we now added a static method to the interface
instead of the superclass:
interface SuperInterface {
 public static void method(SubClass arg) { ... }
}
class SuperSuperClass {
}
class SuperClass extends SuperSuperClass
 implements SuperInterface {
 public static void method(SuperClass arg) { ... }
}
class SubClass extends SuperClass {
}

142 Default and Static Interface Methods

We do not change the method invocation; it is exactly the same as above:
SuperClass.method(new SubClass());
 // still calls SuperClass::method(SuperClass)

This time the added static method does not change the meaning of the method
invocation. The static interface method is not inherited, which means it cannot
be qualified by a subtype's name. The only type qualifier permitted for the static
interface method is the name of the declaring interface. That is,
SuperClass.method and SubClass.method refer to the static class method,
whereas SuperInterface.method is the only permitted reference to the static
interface method.
programming with static interface method

Programming with Static Interface Methods

How the Java community will ultimately be using static interfaces
methods remains to be seen. In the following we take a look at the usage
of static interface methods in the JDK:

Example #1: Substitution of Companion Classes

In a library like the JDK there are situations where functionality is closely
related to an abstraction that is expressed as an interface. An example is
the Collection interface in package java.util. It describes the
operations that are common to all collections such as add, remove,
contains, size, clear, etc. Concrete subclasses, such as ArrayList and
HashSet, provide implementations for this interface. Algorithms that
perform useful functions on collections, such as max, min, or sort for
instance, are implemented separately as static methods in a companion
class named Collections.

Such pairs of an interface and a companion class with static support
methods are fairly common. The pair Collection / Collections is one
example. There are other examples, for instance Executor / Executors in
package java.util.concurrent, Channel / Channels in package java.nio,
Path / Paths in package java.nio.file. The companion class is usually,
but not always, named after the corresponding interface and uses the
plural of the interface's name as its name.

In principle, one could now get rid of all the companion classes by
moving the companion classes' static methods to the related interface.

Collection / Collections

In the case of the Collection / Collections pair it turns out that the
Collections class has so many static methods (~60 methods) that their
addition to the Collection interface would overwhelm the comparatively

Default and Static Inferface Methods 143

slim interface (~20 methods). To boot, class Collections has methods
related to other interface such as List and Set, for instance adapter
methods such as synchronizedList and synchronizedSet, which could or
should be relocated to the List or Set interface instead of the Collection
interface.

So, for historic reasons and for sake of backward compatibility, the
Collection / Collections pair will not be unified by means of static
interface methods.

Let us take a look at more recently designed abstractions such as streams
and collectors for instance.

Stream / Streams

Package java.util.stream has an interface Stream with many non-static
methods (~ 40 methods) and a handful of static method (6 methods).
Most static method in interface Stream are factory methods that create
new streams like for instance
static <T> Stream<T> empty()
static <T> Stream<T> of(T... values)
static <T> Stream<T> generate(Supplier<T> s)
…

Initially, these static factory methods were located in a separate
companion class Streams, but eventually the decision was that they were
too few to deserve a class of their own.

Collector / Collectors

Another example is the pair Collector / Collectors in package
java.util.stream. The companion class Collectors has more that 30
static methods, whereas the Collector interface has only 5 abstract
methods. Adding ~30 static methods to an interface with just 5 abstract
methods renders the interface unreadable. After all the key feature of an
interface is its abstracts methods and they should not disappear in an
abundance of static methods.

Note that the previous case of Stream / Streams was an example of the
opposite: adding 6 static methods to an interface with ~40 abstract
methods does not impair the interface's readability As long as the abstract
methods outnumbers the static methods the interface is still recognizable
as an abstraction.

144 Default and Static Interface Methods

Example #2: Factory Methods

Interestingly, not all static methods related to the Collector interface have
been placed into the companion class Collectors. Two (out of ~ 30)
static methods are defined in the Collector interface, which bears the
question why they are not located in the Collectors class along with all
the other static method.

The reason is that the two static interface methods are very closely related
to the Collector interface - more closely than the remaining static method
in class Collectors. These two static interface methods illustrate what
might become a Java programming idiom for builders or factories.

The static methods in interface Collector are two overloaded versions of
a factory method named of. As arguments the factory methods receive all
the parts that a collector consists of, create a new collector from these
parts, and return it.

A collector consists of 5 parts:

 a supplier function that creates a new result container,

 an accumulator function that incorporates a new data element into a
result container,

 a combiner function that combines two result containers into one,

 a optional finisher function that performs a final transform on the
result container, and

 the collector characteristics that provide hints for an implementation
with better performance.

The Collector interface has an abstract getter method per part and a
factory method that takes an argument per part:
public interface Collector<T, A, R> {
 Supplier<A> supplier();
 BiConsumer<A, T> accumulator();
 BinaryOperator<A> combiner();
 Function<A, R> finisher();
 Set<Characteristics> characteristics();
 …
 public static<T,A,R> Collector<T,A,R> of(
 Supplier<A> supplier,
 BiConsumer<A, T> accumulator,
 BinaryOperator<A> combiner,
 Function<A, R> finisher,
 Characteristics... characteristics) {
 return new CollectorImpl<>(supplier,
 accumulator,
 combiner,
 finisher,

Default and Static Inferface Methods 145

 characteristics);
 }
}

There is an additional second version of the factory method with only
four arguments: it omits the optional finisher part.

The implementing class CollectorImpl is also closely related. It has five
instance fields and a constructor with five arguments:
class CollectorImpl<T, A, R> implements Collector<T, A, R> {
 private final Supplier<A> supplier;
 private final BiConsumer<A, T> accumulator;
 private final BinaryOperator<A> combiner;
 private final Function<A, R> finisher;
 private final Set<Characteristics> characteristics;

 CollectorImpl(Supplier<A> supplier,
 BiConsumer<A, T> accumulator,
 BinaryOperator<A> combiner,
 Function<A,R> finisher,
 Set<Characteristics> characteristics) {
 this.supplier = supplier;
 this.accumulator = accumulator;
 this.combiner = combiner;
 this.finisher = finisher;
 this.characteristics = characteristics;
 }
 ...
 public BiConsumer<A, T> accumulator() {
 return accumulator;
 }
 public Supplier<A> supplier() {
 return supplier;
 }
 public BinaryOperator<A> combiner() {
 return combiner;
 }
 public Function<A, R> finisher() {
 return finisher;
 }
 public Set<Characteristics> characteristics() {
 return characteristics;
 }
 }

There is a second constructor with only four arguments; like the second
factory method it omits the optional finisher part. The implementing
CollectorImpl class is defined as a nested class in the companion class
Collectors.

The two static factory methods in interface Collector directly reflect the
structure of a collector: a collector consists of 5 parts, the interface has 5
matching getter methods, the static factory method takes 5 corresponding

146 Default and Static Interface Methods

arguments, the implementing class has 5 fields and a constructor with 5
matching arguments.

The distinguishing feature of the two static factory methods in interface
Collector becomes obvious when we compare them to the remaining
~30 static methods in the companion class Collectors. Examples of the
static methods in class Collectors are:
public static <T> Collector<T,?,List<T>> toList()
public static <T> Collector<T,?,Set<T>> toSet()

They are factory methods, too, but there is no immediate connection to
the structure of a collector.

Conclusion

As you tell from the examples it is largely a matter of preferences and style
whether a static method is located in an interface or a class. In principle
you can completely eliminate companion classes such as Collections or
Collectors. Equally well you can ignore the new feature of static
interface methods altogether. What will become common practice
remains to be seen. Or, as Brian Goetz put it: " So, while this gives API
designers one more tool, there don't seem to be obvious hard and fast rules about how to
use this tool yet, and the simple-minded "all or nothing" candidates are likely to give
the wrong result. " 11

11 See http://mail.openjdk.java.net/pipermail/lambda-dev/2013-
April/009345.html

Programming with Lambdas 147

Programming with Lambdas

Lambda expressions and method/constructor references were added to
the Java programming language in order to ease the use of the stream
API. Naturally, they can be used independently of streams. In the
following section we want to explore the use of lambdas in general.

Programming with lambda expressions and method/constructor
references has two aspects: usage and design.

Usage. You can use lambdas for ad-hoc definition of functionality. This is
what they are for. Typically you will pass these lambdas to operations
that take functions. The JDK's collection framework and in particular its
stream abstraction in package java.util.stream is an example: it has an
abundance of operations that take functions as arguments. These
operations would be hard to use without lambda expressions and
method/constructor references. When you use lambdas you need to
learn the syntax of lambda expressions and method/constructor
references and, of course, the API to which you intend to supply the
lambdas.

Design. An entirely different aspect is the design of functional APIs.
When you design an API that others will be using you decide in which
way it will be used. Traditional APIs in Java were object-oriented in
nature and demanded an imperative programming style. In the future
you will have the option to design a more functional API in Java that
encourages a functional programming style. The JDK's stream API is an
example, but there are more opportunities for useful functional APIs.

Using lambdas is easy. Once you have read the Lambda Tutorial and some
or all of this Lambda Reference you will know lambdas well enough to use
them in conjunction with functional APIs such as the JDK's stream API.
One piece that is still missing is to familiarize you with the JDK stream.
If you want to learn more about the stream API read the Stream Tutorial
and the Stream Reference.

In the following sections we want to take a closer look at the design of
functional APIs - and related complications such as checked exceptions
and generics. We will re-visit the Execute-Around-Method pattern
mentioned in the Lambda Tutorial as the main example of a functional
programming idiom.

148 Programming with Lambdas

The Execute-Around-Method Pattern

In the Lambda Tutorial we mentioned the Execute-Around-Method pattern
as a programming technique for eliminating code duplication. execute-araound-method

pattern

The Execute-Around-Method pattern addresses situations where it is
required that some boilerplate code must be executed both before and
after a method (or more generally, before and after another piece of code
that varies). Often we simply duplicate the boilerplate code via copy-and-
paste and insert the variable functionality manually. Following the DRY
(don't repeat yourself) principle you might want to remove the code
duplication via copy-and-paste. For this purpose it is necessary to
separate the boilerplate code from the variable code. The boilerplate code
can be expressed as a method and the variable piece of code can be
passed to this method as the method's argument. This is an idiom where
functionality (i.e. the variable piece of code) is passed to a method (i.e. the
boilerplate code). The functionality can be conveniently and concisely be
expressed by means of lambda expressions.

An example is the use of explicit locks. An explicit ReentrantLock (from
package java.util.lock) must be acquired and released before and after a
critical region of statements. Hence the boilerplate code looks like this:
class SomeClass {
 private ... some data ...
 private Lock lock = new ReentrantLock();
 ...
 public void someMethod() {
 lock.lock();
 try {
 ... critical region ...
 } finally {
 lock.unlock();
 }
 }
}

In all places where we need to acquire and release the lock the same
boilerplate code of "lock-try-finally-unlock" appears. Following the
Execute-Around-Method pattern we factor out the boilerplate code into a
helper method:
class Utilities {
 public static void withLock(Lock lock, CriticalRegion cr) {
 lock.lock();
 try {
 cr.apply();
 } finally {
 lock.unlock();
 }

Programming with Lambdas 149

 }
}

The helper method withLock takes the variable code as a method
argument of type CriticalRegion:
 @FunctionalInterface
 public interface CriticalRegion {
 void apply();
 }

The interface CriticalRegion is a functional interface and hence a lambda
expression can be used to provide an implementation of the
CriticalRegion interface.

Now we want to use the withLock utility to get rid of code duplication in
the implementation of a Stack class. Here is a piece of code from a Stack
class's implementation that uses the helper method withLock:
private class Stack<T> {
 private Lock lock = new ReentrantLock();
 @SuppressWarnings("unchecked")
 private T[] array = (T[])new Object[16];
 private int sp = -1;

 public void push(T e) {
 withLock(lock, () -> {
 if (++sp >= array.length)
 resize();
 array[sp] = e;
 });
 }

 ...
}

The boilerplate code is reduced to invocation of the withLock helper
method and the critical region is provided as a lambda expression. While
the suggested withLock method indeed aids elimination of code
duplication it is by no means sufficient as a multi-purpose utility. There
are several open issues. What if ...

 the critical region needs access to data from its enclosing context,
perhaps even mutating access, or

 the critical region returns a value, or

 the critical region throws exceptions, perhaps even checked
exceptions.

150 Programming with Lambdas

Data Access

Access to the enclosing scope's data is usually not a problem. Lambdas
can have bindings to outer scope variables as long as the variables are
effectively final. Plus, lambdas have unrestricted access to the enclosing
class's fields. The code snippet above already demonstrates the data
access.
private class Stack<T> {
 private Lock lock = new ReentrantLock();
 @SuppressWarnings("unchecked")
 private T[] array = (T[])new Object[16];
 private int sp = -1;

 public void push(T e) {
 withLock(lock, () -> {
 if (++sp >= array.length)
 resize();
 array[sp] = e;
 });
 }

 ...
}

The lambda expression reads the enclosing push method's argument e. It
also modifies the enclosing Stack class's fields sp and array.
return types in functional API design

Return Value

The return value is a little more difficult to handle. For instance, the
Stack class's pop method has a return value, but our withLock utility does
not accept critical regions that return a value. In order to allow for
lambda expressions with a return type different from void we can use an
additional CriticalRegion interface with an apply method that returns a
result. This way we end up with two interfaces:
 @FunctionalInterface
 public interface VoidCriticalRegion {
 void apply();
 }
 @FunctionalInterface
 public interface GenericCriticalRegion<R> {
 R apply();
 }

Inevitably, we also need an additional helper method.
class Utilities {
 public static
 void withLock(Lock lock,VoidCriticalRegion cr) {
 lock.lock();

Programming with Lambdas 151

 try {
 cr.apply();
 } finally {
 lock.unlock();
 }
 }
 public static <R> R withLock
 (Lock lock, GenericCriticalRegion<? extends R> cr) {
 lock.lock();
 try {
 return cr.apply();
 } finally {
 lock.unlock();
 }
 }
}

Given the additional helper method and functional interface the pop
method can be implemented like this:
private class Stack<T> {

 ...

 public T pop() {
 return withLock(lock, () -> {
 if (sp < 0)
 throw new NoSuchElementException();
 else
 return array[sp--];
 });
 }
}

Note, that we now have two functional interfaces for the critical region
and two withLock utility methods: one for critical regions with a reference
return type and one for a void return type. The additional interface and
method change the API, but they do not affect its usage. The user simply
passes adequate functionality to the withLock utility method and the
compiler's overload resolution mechanism determines which of the utility
methods must be invoked.
primitive types in functional API design

Primitive Types

A general purpose withLock utility might need further variants for each of
the primitive types as return types i.e., an IntCriticalRegion, a
LongCriticalRegion, a DoubleCriticalRegion, etc. Naturally, we need
corresponding withLock helper methods, so that we end up with many
more functional interfaces and helper methods. Unfortunately, this
drastically increases the opportunity for ambiguities.

152 Programming with Lambdas

Here is an example:
 @FunctionalInterface
 public interface VoidCriticalRegion {
 void apply();
 }
 @FunctionalInterface
 public interface GenericCriticalRegion<R> {
 R apply();
 }
 @FunctionalInterface
 public interface IntCriticalRegion {
 int apply();
 }

Inevitably, we also need additional helper methods.
class Utilities {
 public static
 void withLock(Lock lock,VoidCriticalRegion cr) {
 lock.lock();
 try {
 cr.apply();
 } finally {
 lock.unlock();
 }
 }
 public static
 <R> R withLock
 (Lock lock, GenericCriticalRegion<? extends R> cr) {
 lock.lock();
 try {
 return cr.apply();
 } finally {
 lock.unlock();
 }
 }
 public static
 int withLock(Lock lock, IntCriticalRegion cr) {
 lock.lock();
 try {
 return cr.apply();
 } finally {
 lock.unlock();
 }
 }
}

A class for a stack of primitive type int values would look like this:
public class IntStack {
 private Lock lock = new ReentrantLock();
 private int[] array = new int[16];
 private int sp = -1;
 ...
 public void push(int e) {

Programming with Lambdas 153

 withLock(lock, () -> {
 if (++sp >= array.length)
 resize();
 array[sp] = e;
 });
 }
 public int pop() {
 return withLock(lock, (IntCriticalRegion) () -> {
 if (sp < 0)
 throw new NoSuchElementException();
 else
 return (array[sp--]);
 });
 }
}

Note the ugly cast in the pop method. It is needed because the compiler
yields an error message without it; it cannot figure out whether we are
asking for the withLock version with a GenericCriticalRegion<Integer>
and or with a IntCriticalRegion. Hence the cast is mandatory - which
almost defeats the purpose of using the withLock utility in the first place.

We can get rid of the cast by discarding the primitive type versions of the
CriticalRegion interface and the related overloads of the withLock
method. It reduces the number of overloaded methods and thereby the
chance for ambiguity. In return, we would have to accept the overhead of
boxing and unboxing, and can hope that the compiler's optimization
strategy might eliminate the overhead.

The point to take home is that additional functional interfaces for the
primitive types might look attractive because they eliminate the
boxing/unboxing overhead. At the same time they increase the risk of
overload resolution failure at compile-time and might not be worth the
trouble they cause.

Unchecked Exceptions

Critical regions that throw unchecked exception do not need any
particular attention because unchecked exceptions need not be listed in
throws clauses, neither in the functional interface nor in the utility
method.

The pop method for instance throws an unchecked exception:
private class Stack<T> {

 ...

 public T pop() {
 return withLock(lock, () -> {
 if (sp < 0)

154 Programming with Lambdas

 throw new NoSuchElementException();
 else
 return array[sp--];
 });
 }
}

This works although neither the critical region's apply method nor the
withLock utility method have a throws clause.
checked exceptions in functional API design

Checked Exceptions

The situation is different if the critical region throws checked exceptions.
For illustration let us modify the pop method so that it throws a checked
exception if the stack is empty.
public class Stack<T> {
 …
 public static class EmptyStackException extends Exception {}

 public T pop() throws EmptyStackException {
 return withLock(lock, () -> {
 if (sp < 0)
 throw new EmptyStackException();
 else
 return (array[sp--]);
 });
 }
}

How do we cope with critical regions that do throw checked exceptions?
So far, this does not compile because neither the critical region's apply
method nor the withLock utility method are allowed to raise checked
exceptions.

In principle there are several strategies for solving the problem:

 Exception Tunnelling. We wrap all checked exceptions into unchecked
exception and unwrap them later. This way we need not add throws
clauses the functional interface or the utility method.

 Adding Throws Clauses. We generify the the functional interface or the
utility method by adding a type variable for the exception type.

Exception Tunnelling exception tunnellling

One technique is wrapping all checked exceptions into unchecked
exception and unwrapping them later.

Here is an example:
public T pop() throws EmptyStackException {

Programming with Lambdas 155

 try {
 return withLock(lock, () -> {
 try {
 if (sp < 0)
 throw new EmptyStackException();
 else
 return (array[sp--]);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 });
 } catch (final RuntimeException re) {
 Throwable cause = re.getCause();
 if (cause instanceof EmptyStackException)
 throw ((EmptyStackException) cause);
 else
 throw re;
 }
}

The critical region lambda throws a checked EmptyStackException, which
the functional interface's apply method does not permit. As a work-
around the EmptyStackException is wrapped in to a runtime exception.
The downside of this tunnelling technique is that the receiving code must
catch the runtime exception, unwrap it and thereby restore the original
checked exception.

Adding Throws Clauses

An alternative would involve additional helper methods and functional
interfaces that have appropriate throws clauses. In order to avoid the
exception tunnelling for the pop method from the example above we need
to change the critical region interface and the withLock utility as follows:
@FunctionalInterface
public interface CriticalRegion<R> {
 R apply() throws EmptyStackException;
}

public static
<R> R withLock(Lock lock, GenericCriticalRegion<? extends R> cr)
throws EmptyStackException {
 lock.lock();
 try {
 return cr.apply();
 } finally {
 lock.unlock();
 }
}

This simplifies the user code substantially because there is no need for exception
wrapping and unwrapping anymore:

156 Programming with Lambdas

public T pop() throws EmptyStackException {
 return withLock(lock, () -> {
 if (sp < 0)
 throw new EmptyStackException();
 else
 return (array[sp--]);
 });
}

The downside is that we need one additional pair of helper method and
functional interface per variation of the throws clause. The solution
strategy demonstrated above can be generalized by means of generics: we
can add a type parameter for the exception type.

With a type parameter for the exception type the helper method and
functional interface look like this:
@FunctionalInterface
public interface CriticalRegion<R, E extends Exception> {
 R apply() throws E;
}

public static <R, E extends Exception> R withLock
 (Lock lock, GenericCriticalRegion<? extends R, ? extends E> cr)
 throws E {
 lock.lock();
 try {
 return cr.apply();
 } finally {
 lock.unlock();
 }
}

The user code, e.g. the stack's pop method, is not affected at all and we
can now use the generic withLock utility method for all critical regions
with a checked exception regardless of the exact exception type.

Unfortunately, the generic throws clause does not help if the critical
region throws more than one exception type. For illustration we change the
push method so that it throws two types of exceptions:
public class Stack<T> {
 …
 public static class SizeLimitExceededException
 extends Exception {}
 public static class IllegalElementException
 extends Exception {}

 public void push(T e) // error
 throws SizeLimitExceededException, IllegalElementException {
 withLock(lock, () -> {
 if (++sp >= array.length)
 throw new SizeLimitExceededException();
 if (e == null)

Programming with Lambdas 157

 throw new IllegalElementException();
 array[sp] = e;
 });
 }
}

The compiler now complains about an unreported exception of type
Exception raised by the lambda expression. This is because the compiler
deduces that the lambda expression throws an Exception (which is the
common supertype of two actually raised exceptions
SizeLimitExceededException and IllegalElementException). For this
reason the push method is required to take care of the Exception by either
catching or declaring it in its throws clause. Neither is desirable; we do
not want to change the push method.

As a solution we could consider defining yet another pair of functional
interface and utility method with two type variables for two different
exception types (and so on and so forth for situations with 3, 4, 5, or
more exception types). The unfortunate part is that we cannot even
overload on exception clauses of different length.

Let us try to provide the additional functional interface in order to
illustrate the dilemma:
@FunctionalInterface
public interface VoidCriticalRegion<E extends Exception> {
 void apply() throws E;
}
@FunctionalInterface // error
public interface VoidCriticalRegion<E1 extends Exception,
 E2 extends Exception> {
 void apply() throws E1, E2;
}

The compiler immediately complains that the two interfaces have the
same erasure and rejects our attempt to provide a second functional
interface with the same name. Naturally, we can choose a different name.
e.g. VoidCriticalRegion_2. We also need to provide a corresponding
utility method:
@FunctionalInterface
public interface VoidCriticalRegion<E extends Exception> {
 void apply() throws E;
}
@FunctionalInterface
public interface VoidCriticalRegion_2<E1 extends Exception,
 E2 extends Exception> {
 void apply() throws E1, E2;
}

public static <E extends Exception>
void withLock

158 Programming with Lambdas

(Lock lock, VoidCriticalRegion<? extends E> cr)
throws E {
 lock.lock();
 try {
 cr.apply();
 } finally {
 lock.unlock();
 }
}
public static <E1 extends Exception, E2 extends Exception>
void withLock
(Lock lock, VoidCriticalRegion_2<? extends E1, ? extends E2> cr)
throws E1, E2 {
 lock.lock();
 try {
 cr.apply();
 } finally {
 lock.unlock();
 }
}

So far, it compiles. But, when we invoke the overloaded withLock
method then the compiler runs into overload resolution problems and
reports ambiguities. Here is what happens:
public void push(T e)
throws SizeLimitExceededException, IllegalElementException {
 withLock(lock, () -> { // error
 if (++sp >= array.length)
 throw new SizeLimitExceededException();
 if (e == null)
 throw new IllegalElementException();
 array[sp] = e;
 });
}

The compiler finds both withLock methods, considers both viable, and
reports an ambuity. We can now rename the second withLock method to
withLock_2 (or withLockForCriticalRegionsWithTwoExceptionTypes).
Whatever we try, ultimately coping with checked exceptions in design of
functional APIs is ugly and quite a mess.

Exception Transparency exception transparency

To address this mess, a compiler strategy called exception transparency was
discussed. Exception transparency means that the compiler automatically
infers the throws clauses of methods like withLock in our example.

This kind of compiler support would eliminate the need for countless
variations of the helper method and the functional interface. For the time

Programming with Lambdas 159

being the language designers decided against exception transparency. The
feature may still be added to the language is a future release of Java.12

For Java 8 it means that tunnelling is the technique of choice in order to
cope with checked exceptions.

Checked Exception in Functional APIs of the JDK

Note, that the complications with checked exception are not limited to
our example. The JDK streams and their bulk operation struggle with the
same issue. All the functional interfaces that are used in conjunction with
forEach, filter, map, reduce, etc. do not allow checked exceptions. In
practice, wrapping checked exceptions into runtime exceptions is the
norm.

The lines method in class java.io.BufferedReader illustrates this. It
returns a Stream<String> polulated with the lines read from a
BufferedReader. Accessing the underlying BufferedReader may cause a
checked IOException. As stream operations cannot handle checked
exceptions the checked IOException is wrapped in an
UncheckedIOException, whose sole purpose is tunnelling i/o related
checked exceptions.
wildcards in functional API design

Wildcards Instantiations of Functional Interfaces

Many functional interfaces are generic. In the example discussed in the
previous sections we ended up with a generic functional interface for the
critical region. The same can be observed in the JDK. Just take a look at
the java.util.function package from the JDK: all functional interfaces
in this package are generic interfaces.

Functional interface types are typically used as argument types of
methods. In our example we passed the generic CriticalRegion interface
as an argument to the withLock utility method. Similarly, the functional
interfaces such as Function, Consumer, Supplier, etc. from the JDK
package java.util.function are passed to various methods, e.g. to the
stream operations defined in interface Stream.

It turns out that almost always the argument type must be a wildcard
instantiation of the generic functional interface. As wildcards are an

12 If you are interested in the considerations regarding exception transparency, here are a
couple of references:
https://blogs.oracle.com/briangoetz/entry/exception_transparency_in_java and
http://mail.openjdk.java.net/pipermail/lambda-spec-experts/2012-
September/000007.html.

160 Programming with Lambdas

aspect of generics that is considered "difficult" by many Java developers
we take a closer look at the use of functional interfaces and the need for
wildcard instantiations thereof.

To demonstrate and explain the need for wildcard instantiation we use a
simple example: a Filter interface that is passed to the filter method of
a Sequence.

Here is the functional interface Filter:
@FunctionalInterface
public interface Filter<T> {
 boolean isGood(T t);
}

This is the Sequence abstraction with its filter operation (1st approach,
not yet perfect):
public class Sequence<T> {
 private List<T> seq = new ArrayList<>();
 private Sequence(List<T> source) {
 seq = source;
 }
 @SafeVarargs
 public Sequence(T... elems){
 seq = Arrays.asList(elems);
 }
 public Sequence<T> filter(Filter<T> filter) {
 List<T> res = new ArrayList<>();
 for (T t : seq)
 if (filter.isGood(t))
 res.add(t);
 return new Sequence<T>(res);
 }
 public String toString() {
 return seq.toString();
 }
}

Here we invoke the filter operation to which we pass the method
reference Character::isAlphabetic as a filter function:
Sequence<Character> cs = new Sequence<>
 ('€','§','4','b','ß','Z','ö',(char)0x007E,(char)0x221E,
 (char)0x042F,(char)0x2167,(char) 0x2211);
System.out.println(cs);
Sequence<Character> rs = cs.filter(Character::isAlphabetic);
System.out.println(rs);

It prints:

[€, §, 4, b, ß, Z, ö, ~, ∞, Я, Ⅷ, ∑]
[b, ß, Z, ö, Я, Ⅷ]

Programming with Lambdas 161

All is fine so far. If, however, we use the Filter interface in a slightly
different context it does no longer work:
public static
<E> Sequence<E> universalFilter(Sequence<E> s, Filter<Object> f){
 return s.filter(f); // error: incompatible types
}

System.out.println(universalFilter(cs,o -> o.hashCode()%2!=0));

In the universalFilter method we intend to use a filter of type
Filter<Object> that can handle any kind of object. When we invoke the
method we pass in such a filter, namely o->o.hashCode()%2!=0. This filter
indeed works for all reference types. One would expect that it should also
work for the elements of unknown type E in the Sequence<E> that we pass
to the universalFilter method along with the Filter<Object>.

Yet the compiler complains. It reports that Filter<Object> cannot be
converted to Filter<E>, which is correct. E might be a type different
from Object, which means that the two filter types Filter<E> and
Filter<Object> are indeed incompatible types.

The problem is that the filter method in class Sequence<T> requires an
argument of type Filter<T>, which is too restrictive. It prohibits the use
of the perfectly reasonable universal filter of type Filter<Object>.

The correct signature of the filter method must look like this (2nd
approach, much better):
public class Sequence<T> {
 ...
 public Sequence<T> filter(Filter<? super T> filter) {
 List<T> res = new ArrayList<>();
 for (T t : seq)
 if (filter.isGood(t))
 res.add(t);
 return new Sequence<T>(res);
 }
 ...
}

The filter method must allow parameterizations of the Filter interface
for supertype of the sequence's element type T rather than demanding a
filter of type Filter<T>. With this correction the sample code compiles
and runs and prints:

[§, ß, Я, Ⅷ, ∑]

Here is an additional example. Say, we have a functional interface Mapper:
@FunctionalInterface

162 Programming with Lambdas

public interface Mapper<F,T> {
 T mapTo(F from);
}

It is used by the Sequence's map operation (1st approach, not yet perfect):
public class Sequence<T> {
 private List<T> seq = new ArrayList<>();
 private Sequence(List<T> source) {
 seq = source;
 }
 …
 public <X> Sequence<X> map(Mapper<T,X> mapper) {
 List<X> buf = new ArrayList<>();
 for (T t : seq)
 buf.add(mapper.mapTo(t));
 return new Sequence<>(buf);
 }
}

We can use the map operation like this:
Sequence<Integer> is = new Sequence<>(10,20,30);
System.out.println(is);
Sequence<Double> ds = is.map(i->i/2.0);
System.out.println(ds);

It compiles and runs and prints:
[10, 20, 30]
[5.0, 10.0, 15.0]

Now imagine we have a universal mapper that can map any type of object
to a character:
Mapper<Object,Character> mapper = o -> o.toString().charAt(0);

We want to use this mapper to map a sequence of integers to a sequence
of characters like this:
Sequence<Character> os = is.map(mapper); // error: type mismatch

The compiler complains because the map operation of a
Sequence<Integer> is declared to take a mapper of type
Mapper<Integer,…>, i.e. a mapper that take integers and maps them to
something. We want to use a mapper of type Mapper<Object,…> that takes
any kind of object (and in particular integers) and maps them to
something. Our more universal mapper is perfectly reasonalbe; it is the
map method that is too restrictive.

The signature of the map method can be relaxed like this (2nd approach,
somewhat improved):
public class Sequence<T> {

Programming with Lambdas 163

 …
 public <X> Sequence<X> map(Mapper<? super T,X> mapper) {
 List<X> buf = new ArrayList<>();
 for (T t : seq)
 buf.add(mapper.mapTo(t));
 return new Sequence<>(buf);
 }
}

Our attempt to map a sequence of integers to a sequence of characters
with a mapper of type Mapper<Object,Character> now compiles and runs:
Mapper<Object,Character> mapper = o -> o.toString().charAt(0);
Sequence<Character> os = is.map(mapper); // now fine

If we want to use the same mapper to map a sequence of integers to a
sequence of objects the compiler complains again:
Mapper<Object,Character> mapper = o -> o.toString().charAt(0);
Sequence<Object> os = is.map(mapper); // error: type mismatch

This time it is return type that causes the trouble. If the map operation
receives a mapper of type Mapper<…,Character> then it returns a
Sequence<Character>. We, instead, expect a Sequence<Object>.
Obviously, a sequence of objects can store the results of any mapping and
in particular the characters that are produced by our mapper of type
Mapper<…, Character>. Again, it is the map method that is too restrictive.

Here is the final correction of the map method (3rd approach, maximally
relaxed):
public class Sequence<T> {
 …
 public <X> Sequence<X>
 map(Mapper<? super T,? extends X> mapper) {
 List<X> buf = new ArrayList<>();
 for (T t : seq)
 buf.add(mapper.mapTo(t));
 return new Sequence<>(buf);
 }
}

Our attempt to store the result of the mapping to a sequence of objects
now compiles and runs:
Mapper<Object,Character> mapper = o -> o.toString().charAt(0);
Sequence<Object> os = is.map(mapper); // now fine

The admittedly contrived example demonstrates a common situation in
functional API design. Many of the functional interfaces are generic
interfaces. The operations that take implementations of these generic

164 Programming with Lambdas

functional interfaces must often declare wildcard parameterizations of the
functional interfaces as their argument types in order to be correct. 13

13 For more information on wildcards see
http://www.angelikalanger.com/GenericsFAQ/FAQSections/Index.html#W

Appendix 165

Runtime Representation of Lambda
Expressions

In this section we want to explore what lambda expression and
method/constructor are translated to and how they are serialized.
runtime representation

Translation of Lambda Expressions

to be done

Serialization of Lambda Expressions

to be done

166 Appendix

Appendix

Source Code of Execute-Around-Method Pattern
Case Study

withLock Utility

public class Utilities {
 @FunctionalInterface
 public static interface VoidCriticalRegion {
 void apply();
 }
 public static
 void withLock(Lock lock, VoidCriticalRegion region) {
 lock.lock();
 try {
 region.apply();
 } finally {
 lock.unlock();
 }
 }
 @FunctionalInterface
 public static interface GenericCriticalRegion<R> {
 R apply();
 }
 public static
 <R> R withLock(Lock lock, GenericCriticalRegion<R> region) {
 lock.lock();
 try {
 return region.apply();
 } finally {
 lock.unlock();
 }
 }
}

Stack Class

public class Stack<T> {
 private Lock lock = new ReentrantLock();
 @SuppressWarnings("unchecked")
 private T[] array = (T[])new Object[16];
 private int sp = -1;

 private void resize() {
 // todo later - for now throw index out of bounds
 array[sp] = null;

Appendix 167

 }

 public void push(T e) {
 withLock(lock, () -> {
 if (++sp >= array.length)
 resize();

 array[sp] = e;
 });
 }

 public T pop() {
 return withLock(lock, () -> {
 if (sp < 0)
 throw new NoSuchElementException();
 else
 return (array[sp--]);
 });
 }
}

Experiments with IOException

public class IOSample {
 private Lock lock = new ReentrantLock();
 private IntStack stack = new IntStack();

 /*
 * This uses the VoidCriticalRegion functional interface.
 */
 public void myMethod_1() throws IOException {
 try {
 withLock(lock, () -> {
 try {
 InputStream is = new FileInputStream("test");
 if (is.available() <= 0)
 stack.push(Integer.MAX_VALUE);
 else
 stack.push(Integer.MIN_VALUE);
 } catch (IOException ioe) {
 throw new RuntimeException(ioe);
 }
 });
 } catch (RuntimeException re) {
 Throwable cause = re.getCause();
 if (cause instanceof IOException)
 throw ((IOException) cause);
 else
 throw re;
 }
 }
 /*
 * This uses the VoidIOECriticalRegion functional interface.
 */

168 Appendix

 public void myMethod_2() throws IOException {
 withLockAndIOE(lock, () -> {
 InputStream is = new FileInputStream("test");
 if (is.available() <= 0)
 stack.push(Integer.MAX_VALUE);
 else
 stack.push(Integer.MIN_VALUE);
 });
 }
}

Appendix 169

Index

	Preface
	Prerequisites
	How to Use This Book
	How This Book Is Organized
	How to Contact the Authors
	Acknowledgements

	Questions & Answers
	Lambda Expressions
	Syntax
	The Meaning of Names - Scopes, Shadowing and Binding
	The Meaning of Jumps and Exits
	Recursive and Generic Lambda Expressions

	Method and Constructor References
	Functional Interfaces
	Target Typing
	Non-Abstract Interface Methods
	Default Interface Methods
	Static Interface Methods

	Programming with Lambdas

	Lambda Expressions
	Syntax
	Body
	Parameter List
	Single Parameter with Inferred Type
	Multiple Parameters with Inferred Types
	Regular Parameters with Declared Types

	Return Type and Throws Clause

	The Meaning of Names - Scopes, Shadowing, and Binding
	Scopes
	Nested Scopes
	Names in a Class Scope
	Names in a Method Scope

	Lexical Scoping for Lambda Expressions
	The Meaning of this and super in Lambda Expressions
	Binding Restricted to Implicitly Final Variables

	The Meaning of Jumps and Exits
	Local vs. Non-Local Jumps
	Return and Throw Statements in Lambda Expressions

	Recursive Lambda Expressions
	Generic Lambda Expressions Not Permitted

	Method and Constructor References
	Reference to Constructor
	Reference to Static Method
	Reference to Non-Static Method
	Unbound Receiver
	Bound Receiver

	Functional Interfaces
	Definition
	Functional Interfaces with Additional Non-Abstract Methods
	Annotation @FunctionalInterface
	Generic Functional Interfaces
	Intersection of Functional Interfaces

	Target Typing
	Definition
	Classification of Expressions
	Standalone Expressions
	Poly Expressions

	Poly Contexts
	Target Typing for Poly Expressions
	Target Typing for Instance Creation Expressions with the "Diamond Operator"
	Target Typing for Invocation of Generic Methods
	Target Typing for Conditional Operator Expressions
	Target Typing for Method and Constructor References
	Target Typing & Checked Exceptions
	Target Typing & the Return Type

	Target Typing for Lambda Expressions
	Assignment Context
	Return Context
	Method Invocation Context
	Casting Context

	Wrap-Up

	Type Inference Issues
	Common Type Inference Issues
	Harmless Poly Contexts
	Problematic Poly Contexts
	Coping With Type Inference Failure
	User Site Workarounds
	Declaration Site Workaround & API Design Considerations

	Infrequent Type Inference Issues
	References to Overloaded Methods/Constructors
	More on Wildcard Target Types
	Target Types with a Generic Functional Method

	Non-Abstract Methods in Interfaces
	Default Interface Methods
	Modifiers - Permitted and Prohibited
	Multiple Inheritance
	Programming with Default Methods
	Example #1: Genuine Default Functionality
	Example #2: Orthogonal Functionality
	Example #3: Convenience Functionality
	Example #4: Adapter Functionality
	Example #5: Distinction From (Abstract) Classes

	Ambiguities Involving Default Interface Methods

	Static Interface Methods
	Static vs. Default Interface Methods
	Modifiers - Permitted and Prohibited
	Static Interface vs. Static Class Methods
	Inheritance of Static Methods
	Programming with Static Interface Methods
	Example #1: Substitution of Companion Classes
	Example #2: Factory Methods
	Conclusion

	Programming with Lambdas
	The Execute-Around-Method Pattern
	Data Access
	Return Value
	Primitive Types
	Unchecked Exceptions
	Checked Exceptions
	Wildcards Instantiations of Functional Interfaces

	Runtime Representation of Lambda Expressions
	Translation of Lambda Expressions
	Serialization of Lambda Expressions

	Appendix
	Source Code of Execute-Around-Method Pattern Case Study

	Index

