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Preface 

This is part II of  a series of  books on "Lambdas & Streams in Java 8". 
The series aims to provide comprehensive information about new 
language features in Java 8 (collectively referred to as "Lambdas") and 
new JDK abstractions for bulk operations on collections (collectively 
referred to as "Streams").  The series has four parts: 

 Part I: Lambda Expressions in Java - Tutorial 

 Part II: Lambdas Expressions in Java - Reference 

 Part III:  Streams - Tutorial 

 Part IV: Streams - Reference 

This is part II entitled "Lambdas Expressions in Java - Reference".  It 
provides details regarding all aspects of  lambda expressions, method and 
constructor references, functional interfaces, default interface methods, 
and static interface methods.  

Prerequisites 

Before you read this book you should be familiar with the basics of 
lambda expressions and the related new language features.  This kind of 
basic understanding can be acquired by glossing over a tutorial such as 
part I of the series.  Part I (The Lambda Tutorial) gives an overview of the 
new language features, briefly explains what they look like and what they 
can be used for.  Naturally, the tutorial omits many details - which in turn 
this book (Part II - The Lambda Reference) aims to provide.   

In addition you should be familiar with the basics of the stream API 
because many of the examples in this book use the stream API without 
explaining it in detail.  A basic understanding of the stream API can be 
gained by reading a tutorial such as Part III (The Stream Tutorial) of the 
series. The JavaDoc of JDK 8 plus the Stream Tutorial provide enough 
information to easily comprehend the examples. 

How to Use This Book 

While the tutorial is best read cover to cover, the reference is suitable for 
selective reading.  It can be consulted whenever you are interested in 
details regarding a certain aspect of lambdas.   
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In order to promptly find the information related to the topic at hand 
there you can use: 

 the table of contents,  

 the questions & answers section, and 

 the index. 

They point to the respective relevant sections that might contain the 
information you are looking for. 

While the tutorial (Part I - The Lambda Tutorial) provides an introduction 
and overview, this book (Part II - The Lambda Reference) intends to 
provide details regarding lambdas and related language features. 

For illustration of the level of detail that this book (Part II - The Lambda 
Reference) covers, let us consider the issue of type inference.  It is a 
process that the compiler applies for lambda expressions and method 
references in order to determine their static type.  Type inference is a 
detail that you usually need not care about because the compiler does it 
automatically behind the curtain.  Most of the time you will not even 
notice that type inference happens at all.  But, occasionally, you might run 
into a situation where automatic type inference fails and you receive error 
messages during compilation.  Then you can use the lambda reference to 
learn about the principles of type inference so that you can figure out how 
to cope with a type inference failure. 

Occasionally, the reference covers general information about certain 
language features before it gets to lambda expressions.  This is in order to 
put the issues related to lambdas into perspective.  An example is the 
section on "The Meaning of Names - Scopes, Shadowing, and Binding".  
It first explains the scoping rules in classic Java before it addresses the 
meaning of names in lambda expressions.  Naturally, if you are already 
familiar with scopes and name binding in Java you might want to skip 
what you are familiar with and move forward to the lambda related 
information.  As an aid a hint that points to the lambda related issues is 
provided at the beginning of the section. 

Other sections discuss features might be useful in rare situation, but that 
do not exist in Java (because the language designers decides so).  An 
alternative or work-around is provided, if available.  Still, not everybody is 
interested reading about corner issues and absent features; for this reason 
there is a hint at the beginning of the respective sections that cleary states 
that "this is an esoteric corner issue".  An example is the section on 
"Generic Lambda Expressions".  They do not exist and you can method 
references or anonymous inner classes instead. 
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How This Book Is Organized 

Chapter 1 is devoted to LAMBDA EXPRESSIONS.   

It covers syntax details, explains lexical scoping and illustrates the use of 
names in lambda expressions, and discusses the use of break, continue, 
return, and throw statements used in lambda expressions.  The section 
also points out that certain features are not supported in Java; this 
concerns recursive lambda expressions and generic lambda expressions. 

Chapter 2 covers METHOD AND CONSTRUCTOR REFERENCES. 

It illustrates the syntax variants for references to constructors, non-static 
and static methods and provides many examples thereof. 

Chapter 3 covers FUNCTIONAL INTERFACES.  It explains what a 
functional interface is and what distinguishes it from a regular interface. 
The role of functional interfaces in conjunction with lambda expressions 
and method/constructor reference is discusses.  Special cases such as 
generic functional interfaces and intersections of function interfaces are 
mentioned. 

Chapter 4 explains TARGET TYPING in general and type inference for 
lambda expressions and method/constructor references in particular.  We 
take a look under the hood of the compiler and learn about poly 
expressions, of which lambda expressions are a special case.  Target typing 
requires an inference context and for this reason lambda expressions and 
method/constructor references may only appear in a legal inference 
context.  The chapter touches on all forms of inference contexts that are 
legal in Java and also discusses type inference failure. 

Chapter 5 discusses the RUNTIME REPRESENTATION.  This goes 
into the internals of representing lambda expressions in the JVM.  It 
explains technical details such a s the lambda factory the use of the 
invokedynamic byte code instruction, the generation of bridge methods, 
and the serialization of lambda expressions. 

Chapter 6 covers NON-ABSTRACT INTERFACE METHODS.  
Interfaces can have two types of non-abstract interface methods, namely 
default methods and static interface methods.  Both are explained in this 
chapter.  Via default methods, the debatable feature of multiple 
inheritance of implementation has sneaked into Java.  The chapter 
discusses whether multiple inheritance with default methods is harmful or 
not. 

Chapter 7 is devoted to PROGRAMMING WITH LAMBDAS.  It 
discusses the execute-around-method pattern as an exampel of a 
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programming idiom that is convenient and elegant to use by beans of 
lambda expressions. 

How to Contact the Authors 

Additional information regarding the book series can be found at: 

http://www.AngelikaLanger.com/Lambdas/Lambdas.html 

You can address comments and questions about the book series to the 
authors using the contact form at: 

http://www.AngelikaLanger.com/Forms/Lambda.html. 

Acknowledgements 

Many thanks to all colleagues, readers, and reviewers who took the time to 
read the material and provided constructive feedback.  A number of 
individuals at Oracle patiently answered questions we posed regarding 
lambda expressions and streams.  Our thanks to Brian Goetz, Maurizio 
Cimadamore, and Paul Sandoz. 
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Questions & Answers 

Lambda Expressions 

Syntax 

What is the syntax for a lambda 
expression? 
It consists of a parameter list, the "->" 
symbol, and a body. 

syntax 
lambda 
expression 

20 

What does the body of a lambda 
expression look like?   
It is either an expression or a sequence of 
statements. 

syntax 
lambda body 

21 

What does the parameter list of a lambda 
expression look like?   
It consists of  none, one, or several 
parameters.  Each parameter has a name and 
a type.  The name must be specified; the 
type can be specified or omitted.   

syntax 
lambda 
parameter list 

21 

How do I specify return type and 
exceptions of a lambda?   
Not at all; the return type is always inferred. 

lambda return 
type / throws 
clause 

26 

The Meaning of  Names - Scopes, Shadowing and Binding 

What is a scope?   
A source code section in which a name can 
be used without qualification. Examples are 
classes and methods. 

scopes 27 

What is a name shadowing and name 
binding?   
Shadowing means that an inner name hides 
an outer name. 

shadowing 28 

What happens if a nested class declares 
the same name as its enclosing class?   
The inner name shadows the outer name. 

shadowing - 
class nested 
into class 

29 
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What happens if a method declares the 
same name as its enclosing class?   
Names in a method shadow names in the 
enclosing class. 

shadowing - 
method 
nested into 
class 

30 

What happens if a lambda expression 
declares the same name as its enclosing 
class?   
The inner name shadows the outer name. 

shadowing - 
lambda 
expression 
nested into 
class 

31 

What happens if a local or anonymous 
inner class declares the same name as its 
enclosing method?   
The inner class defines new variables in its 
class scope that shadow variable with 
identical names in the enclosing method 
scope 

shadowing - 
class nested 
into method 

32 

What happens if a lambda expression 
declares the same name as its enclosing 
method?   
The compiler will complain about a 
duplicate definition because every name 
used inside a lambda expression has the 
same meaning as in the enclosing scope. 

shadowing - 
lambda 
expression 
nested into 
method 

34 

What is lexical scoping? 
If a scope is part of its enclosing scope, i.e., 
if an unqualified name used in the inner 
scope refers to a name defined in the outer 
scope. 

lexical 
scoping 

34 

What do this and super mean in a lambda 
expression?   
They mean the same as in the enclosing 
scope. 

meaning of 
this/super 

36 

Why is name binding in a lambda 
expression restricted to implicitly final 
variables of the enclosing scope?   
In order to preserve the properties of local 
variables regarding lifetime and thread-
safety. 

binding to 
finals 

39 
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Can a name in a lambda bind to a 
primitive type local variable of the 
enclosing scope?   
Yes, but the lambda cannot modify the 
primitive type local variable. 

binding to 
primitive 
types 

39 

Can a name in a lambda bind to a 
reference type local variable of the 
enclosing scope?   
Yes, and the lambda may modify the 
referenced object, but must not modify the 
reference variable itself. 

binding to 
reference 

41 

What is the array boxing hack?   
A dubious and error-prone work-around for 
the restriction that lambda expressions can 
only bind to effectively final variable of the 
enclosing context. 

array boxing 
hack 

43 

Do anonymous and local inner classes - 
like lambdas - have access to effectively 
final variables?   
Yes, since Java 8 the explicit final declaration 
can be omitted. 

effectively 
final 

44 

Can a lambda have bindings to non-final 
fields of the enclosing scope?   
Yes, fields accessed in a lambda can be 
modified. 

binding to 
fields 

44 

The Meaning of  Jumps and Exits 

What does break or continue mean in the 
body of a lambda?   
It is a local jump in a loop or switch inside 
the lambda. Non-local jumps out of the 
lambda into the enclosing context are illegal. 

break / 
continue 

46 

What does return or throw mean in the 
body of a lambda?   
It means a regular or exceptional return 
from the lambda. 

return / 
throw 

47 
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Recursive and Generic Lambda Expressions 

Can lambda expressions be recursive?   
No, they can't.  Use anonymous inner 
classes instead. 

recursive 
lambdas 

49 

Can lambda expressions be generic?   
No, they can't.  Use method references 
instead. 

generic 
lambdas 

50 

Method and Constructor References 

What is a method or constructor 
reference?   
A shortcut notation for a lambda created 
from an existing method or constructor. 

method / 
constructor 
references 

53 

How do I refer to the constructor of a 
class or array?   
Via typename::new. 

constructor 
references 

54 

Can I refer to a particular signature of an 
overloaded constructor?   
No, you can only refer to a name, but not to 
a signature. 

reference to 
overloaded 
constructor 

55 

How do I refer to a generic constructor of 
a class?   
There is no difference between a reference 
to a generic or non-generic constructor; the 
generic constructor's type parameters are 
always inferred. 

reference to 
generic 
constructor 

56 

How do I refer to a static method?   
Via typename :: methodname. 

reference to 
static method 

57 

How do I refer to a non-static method?   
Via typename :: methodname if the receiver 
is unspecified. 

Via expression :: methodname where the 
expression is the receiver. 

reference to 
non-static 
method 

60 
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Functional Interfaces 

What are functional interfaces needed 
for?   
Functional interfaces are needed as the 
target type of a lambda expression or 
method / constructor reference. 

functional interface 68 

What is a functional interface?   
An interface with one abstract method. 

definition of 
functional interface 

68 

Can a functional interface have non-
abstract methods?   
Yes, it can have default methods and 
methods inherited from Object. 

non-abstract 
methods in 
functional interfaces 

69 

What is the purpose of the 
@Functional Interface annotation?   
It indicates that an interface is intended 
as a functional interface and triggers 
certain compiler checks. 

@Functionalnterface 
annotation 

71 

Can functional interfaces be generic?   
Yes. 

generic functional 
interface 

71 

Are parameterizations of a generic 
functional interface still functional 
interfaces? 
Yes.  If we take a functional interface 
and replace its type parameters by 
concrete types the resulting 
parameterization is still a functional 
interface. 

parameterization of 
generic interface 

72 

Is the raw type of a generic functional 
interface still functional?  
Yes.  If we drop the type parameters of 
a functional interface then the resulting 
raw type is a functional interface as well. 

raw type of generic 
interface 

72 

Is the intersection of several 
functional interfaces functional, too?   
Yes, if the intersection contains a single 
abstract method. 

intersection of 
functional interfaces 

74 
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Target Typing 

What does the term "target type" 
mean? 
When an expression appears in a 
context, its type must be compatible 
with a type expected in that context.  
The expected type is called the target type.   

target type 76 

What is a standalone expression?   
An expression whose type is determined 
by the expression's content. 

standalone 
expression 

77 

What is a poly expression and in 
which context may it appear?  
An expression whose type is context 
dependent. 

poly expressions 78 

What is a poly context?  
A context that provides information for 
inference of a poly expression's type. 

poly context 79 

How is the target type inferred if the 
"diamond operator" is used?  
By means of the left-hand side type of 
an assignment or a method's declared 
argument type. 

target typing for 
diamond operator 

80 

How is the target type inferred when 
generic methods are invoked?  
By means of the left-hand side type of 
an assignment or a method's declared 
argument type. 

target types with 
generic method 

114 

How is the target type inferred for a 
conditional operator expression?  
By means of the left-hand side type of 
an assignment or a method's declared 
argument type. 

target typing for 
conditional operator 

80 

How is the target type of a method 
reference inferred?  
By means of the left-hand side type of 
an assignment or a method's declared 

target typing for 
method/constructor 
references 

84 
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argument type, or the target type of a 
cast, and comparison of the function 
descriptors. 

Do throws clauses matter in the target 
typing process?  
Yes, they must be compatible. 

target typing and 
checked exceptions 

86 

Do return types matter in the target 
typing process?  
Yes, they must be compatible. 

target typing and 
return type 

89 

How is the target type inferred for 
lambda expressions?  
By means of the left-hand side type of 
an assignment or a method's declared 
argument type, or the target type of a 
cast, and comparison of the function 
descriptors. 

target typing for 
lambda expressions 

89 

What is an intersection type?  
A synthetic type that is a subtype of 
several supertypes. 

intersection type 92 

Can overloaded methods serve as 
method invocation context for a poly 
expression?  
Yes, they can, but they may lead to error 
messages due to ambiguity. 

target typing & 
overloading 

96 

What can I do if I pass a lambda to an 
overloaded method and the compiler 
rejects it due to an ambiguity? 
Specify the lambda's arguments types 
explicitly. 

use explicit lambdas 98 

Is overloading generally discouraged 
in Java 8? 
No, it causes problems only in 
conjunction with lambdas, i.e. do not 
overload on different functional types 

avoid overloading on 

functional types 
105 

Can generic functional interfaces be 
implemented by lambda expressions 
and method/constructor references?  

target typing & 
generic target types 

111 



16 Questions & Answers 

 

Yes. 

What happens if the target type is a 
wildcard parameterization of a generic 
functional interface? 
The compiler replaces the wildcard by 
its bound (or object if unbounded). 

target typing & 
wildcards 

111 

Can a functional interface with a 
generic method be implemented by 
lambda expressions and method/ 
constructor references?  
No, for lambda expressions. Yes, for 
method/constructor references. 

target types with 
generic method 

114 

Non-Abstract Interface Methods 

What is a non-abstract method in an 
interface?  
A non-abstract interface method has an 
implementation.  It is either a default 
method or a static method. 

non-abstract 
interface method 

117 

Default Interface Methods 

What are default methods intended 
for?  
They permit adding functionality to 
existing interfaces without breaking the 
subclasses. 

default methods 117 

Can default methods be private or 
protected? 
No, they are always public. 

accessibility of 
default methods 

119 

Why can't default methods be final? 
Because it could break existing 
subclasses. 

final default 
methods 

120 

Do default methods add multiple 
inheritance to Java?  
Yes, default methods in interfaces 
permit multiple inheritance of 

multiple inheritance 120 
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functionality. 

What is the "deadly diamond of 
death"?  
An error-prone form of multiple 
inheritance. 

deadly diamond of 
death 

121 

Is multiple inheritance in Java 
dangerous?  
No. 

peril of multiple 
inheritance 

121 

What are default methods used for?  
Evolution of existing interfaces plus API 
development in general 

programming with 
default methods 

122 

Can multiple inheritance involving 
default methods lead to conflicts and 
ambiguities?  
Yes. 

ambiguous default 
methods 

127 

Static Interface Methods 

What is a static interface method?  
A method in an interface with the static 
modifier and an implementation. 

static inferface 
methods 

135 

How do static and default interface 
methods differ?  
Like static class methods differ from 
non-static class methods: static method 
cannot access non-static members and 
static methods cannot be overridden. 

difference static / 
default method 

135 

Can static methods be private or 
protected? 
No, they are always public. 

accessibility of static 
interface methods 

138 

How do static interface and static 
class methods differ?  
Static interface methods are not 
inherited, must be invoked via their 
declaring interface type and must not be 
invoked via an instance. 

difference static 
interface / class 
methods 

138 
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Why is inheritance of static interface 
methods illegal?  
Because it could break existing code. 

inheritance of static 
interface methods 

140 

What are static interface methods 
used for?  
For implementation of static operations 
that are closely related to an interface. 

programming with 
static interface 
method 

142 

Programming with Lambdas 

What is the execute-around-method 
pattern? 
A programming technique for 
eliminating code duplication. 

 ex
ecute-
araound-
method 
pattern 

 

148 

How do I handle functions with 
different return types when I design a 
functional interface? 
Via overloading on a generic return 
type and the void return type. 

return types in 
functional API design 

150 

How do I cope with primitive types 
when I design a functional interface?  
Via overloading on reference and 
primitive types; while it eliminates the 
boxing/unboxing overhead it increases 
the risk of overload resolution failure. 

primitive types in 
functional API design 

151 

How can I cope with checked 
exception when I design a functional 
interface?  
By exception tunnelling or adding 
generic throws clauses. 

checked exceptions in 
functional API design 

154 

What is exception tunnelling? 
Wrapping checked exceptions into 
unchecked exceptions. 

exception tunnellling 154 

What is exception transparency?  
A compiler strategy for inference of 
checked exceptions raised by a lambda. 

exception transparency 158 
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How do I correctly use generic 
functional interfaces?  
When generic functional interfaces 
appear as arguments of operations they 
are often parameterized with a 
wildcard. 

wildcards in functional 
API design 

159 
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Lambda Expressions 
syntax lambda expression 

Syntax 

A lambda expression describes an anonymous function.  Like a function it 
has a parameter list and a body.  Let us start with a simplified version of 
the syntax. We will get to the detailed syntax later on. 
 

LambdaExpression: 
  LambdaParameters '->' LambdaBody 

LambdaParameters: 
  Identifier 
  '(' ParameterList ')' 

LambdaBody: 
  Expression 
  Block 

 

A lambda expression consists of a parameter list, the arrow symbol  "->", 
and a body. 

Here are a couple of examples of lambda expressions and their equivalent 
as a method with an arbitrary name (namely nn in the table below). 

lambda expression  equivalent method 

() -> { System.gc(); } void nn() { System.gc(); } 

(int x) -> { return x+1; } int  nn(int x) return x+1; } 

(int x, int y) 

 -> { return x+y; } 

int  nn(int x, int y)   

{ return x+y; } 

(String... args) 

 ->{return args.length;} 

int  nn(String... args) 

{ return args.length; } 

(String[] args)  

 -> {  

   if (args != null)  

     return args.length; 

   else 

     return 0; 

} 

int  nn(String[] args)  

{  

   if (args != null)  

     return args.length; 

   else 

     return 0; 

} 
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(Future<Long> f) 

 -> { return f.get(); } 

Long nn(Future<Long> f) 

 throws ExecutionException, 

     InterruptedException         

{ return f.get(); } 

 

These lambdas look similar to methods.  The difference is that they do 
not have a name and neither the return type nor the throws clause is 
declared.  Both are automatically inferred by the compiler. 
syntax lambda body 

Body 

The lambda body can be a block of one or more statements.  It can also 
be as simple as a plain expression. 

Here are a couple of examples of lambda expressions with a body that 
consist of no more than an expression: 

lambda expression  equivalent method 

() -> System.gc() void nn() { System.gc(); } 

(int x) -> x+1 int  nn(int x) { return x+1; } 

(int x, int y) -> x+y int  nn(int x, int y)  

{ return x+y; } 

(String... args) 

 -> args.length 
int  nn(String... args) 

{ return args.length; } 

(String[] args)  

 ->  

(args!=null)? args.length : 0

int  nn(String[] args)  

{  

   return (args != null) 

         ? args.length: 0; 

} 

(Future<Long> f) 

 -> f.get() 
Long nn(Future<Long> f)  

throws ExecutionException,        

       InterruptedException       

{ return f.get(); } 
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Here are a couple of counter examples, namely lambda expressions that 
do no compile: 

lambda expression  at compile-time 

(int x) -> return x+1 error: not a statement 

The return keyword can only appear 
in a statement and statements must 
be terminated by a semicolon. 

(int x) -> return x+1; error: illegal start of expression 

A statement can only appear in a 
block, i.e. the statement must be 
enclosed in curly braces. 

(int x)  -> { return x+1; } fine 

(Future<Long> f) -> { f.get() } error: ';' expected 

In a block only statements are 
permitted; a plain expression is 
illegal. 

(Future<Long> f) 

 -> { f.get(); } 

error: missing return value 

In a block there must be a return 
statement if a return value is 
exptected. 

(Future<Long> f) 

 -> { return f.get(); } 
fine 

syntax lambda parameter list 

Parameter List 

There are a couple of variations of the parameter list. The parameter types 
of a lambda expression may either all be declared or all inferred. The 
inferred types are derived from the context in which the lambda 
expression appears. 

Single Parameter with Inferred Type 

If the parameter list consists of exactly one parameter then it can be reduced to an 
identifier, i.e. the name of the parameter.  
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Examples of  a parameter list reduced to a single identifier: 

 

lambda expression  at compile-time 

x -> x+1 fine 

args -> args.length fine 

f -> { return f.get(); } fine 

f -> f.get() fine 

int x -> x+1 error: illegal  

If the parameter type is specified 
then the enclosing parenthesis are 
mandatory. 

(int x) -> x+1 fine 

x,y -> x+y error: illegal 

If there is more than one 
parameter then the enclosing 
parenthesis are mandatory. 

(int x,int y) -> x+y fine 

 

The notation without a declared type requires that the compiler can infer the 
parameter type from the context in which the lambda expression appears. 

 

The syntax permits further variations, among then an empty parameter list, a 
parameter list without declared parameter types, and a variable parameter list.  
Here is the parameter list's detailed syntax:  

 
LambdaParameters: 
  Identifier 
  '(' InferredFormalParameterList ')' 
  '(' FormalParameterListopt ')' 

InferredFormalParameterList: 
  Identifier 
  InferredFormalParameterList ',' Identifier 
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FormalParameterList: 
  LastFormalParameter 
  FormalParameters ',' LastFormalParameter 

FormalParameters: 
  FormalParameter 
  FormalParameters, FormalParameter 

FormalParameter: 
  VariableModifiersopt Type VariableDeclaratorId 

LastFormalParameter: 
  VariableModifiersopt Type '...' VariableDeclaratorId 
  FormalParameter 

Multiple Parameters with Inferred Types 

The InferredFormalParameterList is a list of parameters without type 
specifications. The enclosing parentheses are mandatory. The declared type can 
only be omitted when the compiler can infer the parameter type from the context 
in which the lambda expression appears. 

 

Examples of the InferredFormalParameterList: 

 

lambda expression  at compile-time 

(int x)       -> x+1 fine 

 int x        -> x+1 error: illegal  

If the parameter type is specified 
then the enclosing parenthesis are 
mandatory 

(x)           -> x+1  fine 

 x            -> x+1 fine (because there is only one 
parameter) 

(int x,int y) -> x+y fine 

 int x,int y  -> x+y error: illegal  

If the parameter type is specified 
then the enclosing parenthesis are 
mandatory 
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(x,y)         -> x+y fine 

 x,y          -> x+y error: illegal 

If there is more than one parameter 
then the enclosing parenthesis are 
mandatory. 

Regular Parameters with Declared Types 

The regular FormalParameterList is a list of parameters as we know it from 
methods. The enclosing parentheses are mandatory.  The parameter list can be 
empty, in which case it consist of empty brackets.  It can contain one or more 
parameters with a declared type.  If one parameter has a declared type, then all 
parameters must have a declared type.  Mixing inferred and declared types is 
illegal.  The declared type can have modifiers like final for instance.  The last 
parameter may be a variable parameter, also know as "varargs" parameter like 
String... for instance. 

 

Examples of the regular FormalParameterList: 

 

lambda expression  at compile-time 

()                           -> 42 fine 

(int x)                      -> x+1 fine 

(int x,int y)                -> x+y fine 

(String fmt, Object... args) -> 
String.format(fmt,args) 

fine 

(int x, y)                   -> x+y error: illegal  

Mixing inferred and 
explicit parameter types 
is illegal. 

(final int x)                -> x+1 fine 

(final x)                    -> x+1 error: illegal 

Only explicit parameter 
types can have 
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modifiers. 
lambda return type / throws clause 

Return Type and Throws Clause 

Different from a method a lambda expression does neither declare a 
return type nor a throws clause.  Both the lambda's return type and its 
throws clause are always automatically inferred by the compiler from the 
context in which the lambda expression appears. 
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The Meaning of  Names - Scopes, Shadowing, and 
Binding 

Lambda expressions are frequently compared to methods on the one hand and 
anonymous inner classes on the other hand.  The syntax of lambda expressions is 
similar to the syntax of methods, as we have seen in the section on "Syntax".   At 
the same time, lambda expressions are used in places where traditionally 
anonymous inner classes were used (see the section on "What are lambda 
expressions?" in the Lambda Tutorial document for examples). 

 

The key difference between the "new" lambda expressions and "old" methods 
and anonymous inner classes is that classes and methods have their own scopes. 
Methods and classes can declare names that are in the respective method or class 
and shadow corresponding names in enclosing scopes.  Lambda expressions, in 
contrast, are part of their enclosing scope (i.e., they are NOT scopes of their 
own).  Names declared in a lambda expression contribute to the enclosing scope; 
they never shadow names in the enclosing scope. 

 

In the following we will discuss what a variable name means in the body 
of a lambda expression, in a method body, or in an anonymous inner 
class, and what happens if the same name is declared in different, 
potentially nested scopes. 

 
Note: In the subsequent sections we first explain scopes, name binding, 
and shadowing in general before we look into name binding issues related 
to lambda expressions.  If you are already familiar with the concept of 
scopes, name binding, and shadowing, feel free to skip the subsequent 
sections and continue with the section on "Lexical Scoping for Lambda 
Expressions". 

 
scopes 

Scopes 

Java has a notion of scopes.  A scope is the part of the program text within which a 
name can be referred to without any qualification, i.e., by using the simple name.  
Examples of scopes are classes and methods.   

 

For instance, if we define a static field in a class then the scope of this 
field is the entire class; we can use the field's name everywhere within the 
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class without needing any qualification. If we refer to the name from 
outside of the class, in contrast, we need to qualify the name. 

Example of a name defined in class scope: 

 
public class Container { 
  public static final int MAX_CAPACITY = 1024; 
  public Container() { 
    ... = new Object[MAX_CAPACITY];        // simple name 
  } 
} 
public class Test { 
  public static void main(String... args) { 
    if (size < Container.MAX_CAPACITY)     // qualified name  
     ...    
  } 
} 

 

The scope of the name MAX_CAPACITY is the declaring class Container.  The 
name MAX_CAPACITY can be used inside the class scope without qualification and 
must be qualified (by the name of its declaring class Container) outside of the 
class scope, e.g. when used in class Test. 

   

Scopes are distinct, i.e., the same name can appear in different scopes and refer to 
different entities.  For instance, another class Sequence might also declare a field 
named MAX_CAPACITY.   We would then have two separate fields, namely 
Container.MAX_CAPACITY and Sequence.MAX_CAPACITY. 

 
public class Container {               // declaring scope #1 
  public static final int MAX_CAPACITY = 1024; 
  ...} 
} 
public class Sequence {                // declaring scope #2 
  public static AtomicInteger MAX_CAPACITY  
    = new AtomicInteger(); 
  ... 
  } 
} 
 
public class Test() {                  // using scope 
  public static void main(String... args) { 
    if (Container.MAX_CAPACITY  
                  <= Sequence.MAX_CAPACITY.get())  
      ... 
  } 
} 

shadowing 
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Nested Scopes 

Matters are simple as long as the scopes are clearly separated like in the example 
above. But, what happens if scopes are nested, e.g., if one class appears in the 
scope of another class, and both classes declare the same name?  Depending on 
the situation, two effects can occur: 

 shadowing: the inner name shadows the outer name, or 

 binding: the inner name is bound to the outer name. 

Shadowing means that use of the simple name in the inner scope refers to the inner 
entity and the outer entity is hidden, i.e., shadowed.  In order to refer to the 
shadowed outer entity a qualification is needed. 

 

Binding means that use of the simple name in the inner scope refers to the outer 
entity and there is no separate inner entity.  Both the inner and the outer name 
refer to the same entity declared in the outer scope. 

 

In the following we will look into different situations in which names are 
shadowed.  We will first consider scopes that are nested into a class and then 
scopes that are nested into a method.   
 

Names in a Class Scope 

In this section we discuss name binding issues in scopes that are nested 
into a class. 

A class is a scope.  It may contain other entities, such as methods, nested 
or inner classes, or lambda expressions.  Some of these entities are also 
scopes, i.e., we have nested scopes in these situations. The outer and the 
inner scope might define the same name.  How does name binding work 
in case of scopes nested into a class scope?  

We will discuss the following situations: 

 a class defined in another class 
 a method defined in a class 
 a lambda expression defined in a class 

shadowing - class nested into class  

Nested Scopes#1: A Class Nested into another Class 

What happens if classes are nested, e.g., if one class appears in the scope 
of another class, and both classes declare the same name?  Then the inner 
name shadows the outer name.   



30 Lambda Expressions 

 

Example of a class nested into a class scope: 

 
public class Container {                                      // 
outer scope 
  public static final int MAX_CAPACITY = 1024; 
  public Container() { 
   ... = new Object[MAX_CAPACITY];   
  } 
  private static class NestedSequence {                       // 
inner scope 
    public static AtomicInteger MAX_CAPACITY; 
    public NestedSequence() { 
      MAX_CAPACITY  
       = new AtomicInteger(Container.MAX_CAPACITY); 
    } 
  } 
} 
 
public class Test() {                                         // 
unrelated using scope 
  public static void main(String... args) { 
    if (Container. MAX_CAPACITY  
        <= Container.NestedSequence.MAX_CAPACITY.get())  
       ... 
  } 
} 
 

Class NestedSequence is declared in the scope of the enclosing class Container.  
Both classes declare a field MAX_CAPACITY.  When the simple name 
MAX_CAPACITY is declared in the nested class it shadows the name MAX_CAPACITY 
from the enclosing class.  If we want to refer to the MAX_CAPACITY field from the 
enclosing scope we need to use the qualified name Container.MAX_CAPACITY. 
shadowing - method nested into class 

Nested Scopes#2: A Method Nested into a Class 

Methods, too, are scopes. If we define a name in a method then the scope of this 
name is the method including the method's parameter list.  Methods always have 
an enclosing scope, namely the scope of their declaring class.  In analogy to 
nested classes, names in a method shadow names declared in the enclosing class. 

 

Example of methods nested into a class scope: 

 
class Sequence {                           // outer scope 
  private int capacity = 0; 
 
  public Sequence(int capacity) {          // inner scope #1 
    int tmp = capacity; 
    ... 
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    this.capacity = tmp; 
  } 
  public void resize(int capacity) {       // inner scope #2 
    int tmp = capacity; 
    ... 
    this.capacity = tmp; 
  } 
}  

 

Both the constructor and the resize method declare the name tmp.  Each 
method is a scope of its own and the two entities named tmp do not collide.  

 

The enclosing class declares the name capacity and both the constructor 
and the resize method declare the same name capacity.  We have three 
scopes (class, constructor, and method) and therefore we have three 
entities named capacity.  The use of the simple name capacity inside the 
constructor or method shadows the name capacity declared in the 
enclosing class.  If we want to refer to the enclosing capacity inside a 
constructor of method we must use the qualified name this.capacity. 
shadowing - lambda expression nested into class 
 

Nested Scopes#3: A Lambda Expression Nested into a Class  

When lambda expressions appear on the class level, the rules for the names they 
declare are the same as for methods: names in the lambda expression shadow 
names declared in the enclosing class. 

 

Example of lambda expression nested into a class scope: 

 
class Sequence {                           // outer scope 
  private int capacity = 0; 
 
  public void resize(int capacity) {       // inner scope #1 
    int tmp = capacity; 
    ... 
    this.capacity = tmp; 
  } 
  private IntConsumer resizer = (int capacity) -> {   
                                           // inner scope #2 
    int tmp = capacity; 
    ... 
    this.capacity = tmp; 
  }; 
}  
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The lambda expression declares local entities named tmp and capacity of its 
own and uses the qualified name this.capacity if it needs a reference to the 
enclosing class's entity. 

 

The principle is always the same.  If we have an outer scope (a class) and an inner 
scope (a nested type, method, or lambda expression) and the outer and the inner 
scope declare the same name, then both names denote separate entities.  The 
inner name shadows the outer name and we can distinguish between the entities 
by using qualified names.  The qualifier is either a type name (e.g. 
Container.MAX_CAPACITY) or an expression (e.g. this.capacity).  

 

Note, that a name declared in a class is visible in the entire class.  Its declaration 
can be placed before or after its use, i.e., the declaration of the name need not 
precede its use. 

 

Example of  using a name before declaring the name: 

 
class Sequence { 
  public void resize(int capacity) { 
    int tmp = capacity; 
    ... 
    this.capacity = tmp;                     // usage 
  } 
  private IntConsumer resizer = (int capacity) -> { 
    int tmp = capacity; 
    ... 
    this.capacity = tmp;                     // usage 
  }; 
 
  private int capacity = 0;                  // declaration  
}  

Names in a Method Scope 

In this section we discuss name binding issues in scopes that are nested 
into a method. 

Since methods cannot be defined inside other methods, the only scopes 
that can be nested into a method are local or anonymous inner classes and 
lambda expressions. 

We will look into the following situations: 

 a class defined in a method 
 a lambda expression defined in a method 

shadowing - class nested into method 
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Nested Scopes#4: A Class Nested into a Method 

First, we consider classes that appear in the scope of a method.  If both 
the enclosing method and the local or anonymous inner class declare the 
same name, then we have two entities with the same name in different 
nested scopes.  Like top level and nested classes, local and anonymous 
classes are scopes.   

Example of a local class nested into a method scope: 

 
public void reverse_sort(Comparator arg) {    // outer scope 
  Comparator cmp = null; 
  class ReverseComparator implements Comparator { 
                                              // inner scope 
    private Comparator cmp; 
    public ReverseComparator() {   
      cmp = arg;   
    } 
    public ReverseComparator(Comparator arg) { 
      cmp = arg; 
    } 
    public int compare(Object lhs, Object rhs)  {  
      return cmp.compare(rhs,lhs);  
    } 
  } 
  cmp = new ReverseComparator() ; 
  ... 
} 

 

In the code snippet above the reverse_sort method declares a local variable 
named cmp and the local class ReverseComparator defines a field named cmp.  
Since the local class is a scope, we end up with two entities in two different scopes 
that have the same name.  Using its simple name in the inner scope shadows the 
name in the outer scope.  This time there is no qualification that would permit 
reference to the outer entity from the inner scope.  There is simply no qualifier for 
a local variable such as the cmp variable in method reverse_sort. 

 

The example above also illustrates name binding.  The outer scope, i.e. the 
reverse_sort method, declares a variable named arg.  The no-argument 
constructor of class ReverseComparator does not declare a variable named arg 
of its own, but uses the name arg to refer the outer scope variable arg.  Before 
Java 8, this kind of name binding was only permitted if the outer scope variable 
was declared as final.  Since Java 8, the name binding is allowed without the 
final declaration.   The bound variable, however, must be effectively final, which 
means that you need not explicitly declare it as final, but the compiler implicitly 
treats it as final and issues error messages for every attempted modification. 
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The other constructor of class ReverseComparator does declare a variable 
named arg of its own.  In this constructor the simple name arg refers to the local 
variable arg and not to the outer scope variable arg.  Here we have shadowing 
instead of binding. (In practice, it is advisable to use different names in order to 
avoid any confusion regarding the meaning of each name.  We are using colliding 
names in the example solely for the sake of illustration.) 

 

In the example above we have been using a local class as the inner scope.  The 
same shadowing and binding occurs for anonymous inner classes.  Here is the 
same example with an anonymous instead of a local class. 

 

Example of an anonymous class nested into a method scope: 

 
public void reverse_sort(Comparator arg) {   // outer scope 
  Comparator cmp = null; 
  cmp = new Comparator() {                   // inner scope 
    private Comparator cmp; 
    { // initializer 
        cmp = arg;  
    } 
    public int compare(Object lhs, Object rhs)  { 
        return cmp.compare(rhs,lhs); 
    } 
  };   
  ... 
} 

 

The name cmp declared in the anonymous inner class shadows the same 
name declared in the enclosing method.  The name arg is not declared in 
the anonymous inner class and refers to the outer entity, which is 
implicitly final. Note, in this version of the example the inner variable 
named cmp can be eliminated; is it used solely for illustration. 
shadowing - lambda expression nested into method 

Nested Scopes#5: A Lambda Expression Nested into a Method 

If we use lambda expressions inside a method we find that they are not 
scopes of their own, different from local and anonymous inner classes.  
Instead, a lambda expression is part of the scope in which it appears.   
This is called lexical scoping and is discussed in the next section.  
lexical scoping 



Lambda Expressions 35 

 

Lexical Scoping for Lambda Expressions 

If a lambda expression is defined in a method and declares names that 
already exist in the enclosing method, then the compiler issues an error 
message. This is because a lambda expression is not a scope, but is part of 
its enclosing scope. (This is called lexical scoping.)   

Example of a lambda expression nested into a method scope: 

 
public void reverse_sort(Comparator arg) {    // outer scope 
  Comparator cmp = null; 
  cmp = (Object lhs, Object rhs)  -> {     // NO inner scope 
    Comparator cmp;       // error: name cmp already defined 
    cmp = arg; 
    return cmp.compare(rhs,lhs); 
  };  ... 
} 

 

The example illustrates that the lambda expression is part of the method scope in 
which it appears.  When the name cmp is declared in the lambda expression the 
compiler considers it an attempt to define a name that already exists in the current 
scope and issues an according error message.  

 

This is a fundamental difference compared to local and anonymous inner classes.  
While classes are scopes of their own, lambda expressions are part of their 
enclosing scope and do not define names of their own.  Every name used 
inside the lambda expression has the same meaning as in the enclosing 
scope.  This is one reason why lambdas in Java are called lambda expressions: 
they are expressions (in contrast to classes or methods).  Regarding scopes and 
the meaning of names lambda expressions behave like expressions:  they are part 
of the enclosing scope and contribute to it. 

 

The name binding works the same way as it does for local and anonymous inner 
classes.  If a name declared in the enclosing scope is used inside the lambda 
expression then it refers to the outer entity.  In the example, use of the name arg 
in the lambda refers to the arg variable in the enclosing method scope. 

 

Let us fix the error in the lambda expression above. We can use a name different 
from cmp and thereby eliminate the name collision.  Since the lambda expression 
in our example does not even need the cmp variable we can drop it altogether. 

 

Example identical to the one before, but without an error: 
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public void reverse_sort(Comparator arg) { // outer scope 
  Comparator cmp = null; 
  cmp = (Object lhs, Object rhs)  -> {     // NO inner scope 
    return arg.compare(rhs,lhs); 
  };   
  ... 
} 

 

Note, that a name declared in a method must be declared before its use.  This is 
different from the declaration of names in class scope.  A name defined in a class 
scope is visible in the entire class; it can be declared after is has been used.  This is 
not permitted for names in methods.   A name declared in a method is visible 
from its declaration until the end of the scope.   

 

This means that a name defined in a lambda expression only collides with 
identical names of the enclosing method if the colliding name has been declared 
before it appears in the lambda.  There is no collision if the name is declared after 
the lambda. 

 

Example that demonstrates the above: 

 
public void reverse_sort(Comparator arg) { 
  Comparator cmp = null; 
  cmp = (Object lhs, Object rhs)  -> { 
    Comparator tmp = arg;         // fine; no name collision 
    return tmp.compare(rhs,lhs); 
  }; 
  Comparator tmp = arg; 
  cmp = (Object lhs, Object rhs)  -> { 
    Comparator tmp = arg;     // error: name already defined 
    return tmp.compare(rhs,lhs); 
  }; 
  ... 
} 

 

When the first lambda declares the name tmp then there is no collision 
because the enclosing method has not yet declared the name tmp.  When 
the second lambda declares the name tmp then the compiler complains 
because at that point in the program text there is a variable named tmp 
declared in the enclosing method that is in conflict with the lambda's 
variable of the same name. 
meaning of this/super 
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The Meaning of  this and super in Lambda Expressions 

As explained before, lambda expressions are expressions and a name used inside 
a lambda expression has the same meaning as in the enclosing scope.  This is also 
true for the keywords this and super. 

 

Example of the meaning of this in a lambda expression: 

 
class Sequence { 
  public void reverse_sort(Comparator arg) { 
    System.out.println(this.toString());  
                                // this denotes the sequence 
    Comparator cmp = (Object lhs, Object rhs)  -> { 
       System.out.println(this.toString());                   
                                // this denotes the sequence 
       return arg.compare(rhs,lhs); 
    }; 
  } 
} 

 

In the example, the comparator is provided as a lambda expression.  The this 
keyword has the same meaning inside and outside the lambda expression; in both 
cases it refers to the sequence. 

 

Example of the meaning of this in an anonymous inner class: 

 
class Sequence { 
  public void reverse_sort(Comparator arg) { 
    System.out.println(this.toString());                      
                                // this denotes the sequence 
    Comparator cmp = new Comparator() { 
      public int compare(Object lhs, Object rhs)  { 
        System.out.println(this.toString());                                 
                              // this denotes the comparator 
        System.out.println(Sequence.this.toString());         
                                // this denotes the sequence 
        return arg.compare(rhs,lhs); 
      } 
    }; 
  } 
} 

 

In the example, the comparator is provided as an anonymous inner class.  When 
the this keyword is used inside the inner class it now refers to the comparator 
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instead of the sequence.  In order to refer to the sequence from with the inner 
class the qualified name Sequence.this must be used. 

 

In analogy, the keyword super refers to the supertype of the enclosing type when 
used in a lambda expression and to the supertype of the anonymous class when 
used in an anonymous class. 

 

Example of the meaning of super in a lambda expression: 

 
class Sequence implements Cloneable { 
  public Sequence clone() { 
    Sequence copy = null; 
    Supplier<Sequence> cloner; 
    cloner = () -> { 
      try { 
        return (Sequence)super.clone();            
                    // super refers to supertype of Sequence 
      } catch(CloneNotSupportedException e) { 
        throw new InternalError(e); 
      } 
    }; 
    copy = cloner.get(); 
    .... 
    return copy; 
  } 
} 

 

Example of the meaning of super in an anonymous inner class: 

 
class Sequence implements Cloneable { 
  public Sequence clone() { 
    Sequence copy = null; 
    Supplier<Sequence> cloner; 
    cloner = new  Supplier<Sequence>() { 
      public Sequence get() { 
        try { 
          // error: ClassCastException 
          // super refers to supertype of anonymous Supplier 
          return (Sequence)super.clone(); 
        } catch(CloneNotSupportedException e) { 
          throw new InternalError(e); 
        } 
      } 
    }; 
    copy = cloner.get(); 
    .... 
    return copy; 
  } 
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} 
 

When we need to refer to the supertype of the enclosing type a qualification is 
needed, i.e., we must use Sequence.super instead of just super inside the 
anonymous class. 

 

Example, same as before with error eliminated: 

 
class Sequence implements Cloneable { 
  public Sequence clone() { 
    Sequence copy = null; 
    Supplier<Sequence> cloner; 
    cloner = new  Supplier<Sequence>() { 
      public Sequence get() { 
        try { 
          return (Sequence)Sequence.super.clone();  // fine  
        } catch(CloneNotSupportedException e) { 
          throw new InternalError(e); 
        } 
      } 
    }; 
    copy = cloner.get(); 
    .... 
    return copy; 
  } 
} 

binding to finals binding to primitive types 

Binding Restricted to Implicitly Final Variables 

A lambda expression can refer to variables of its enclosing scope.  This 
binding of a name used in the lambda to a local variable of the enclosing 
scope requires that the respective variable is not modified.  In order to 
prevent modification, the outer variable can either be explicitly declared as 
final, or the compiler implicitly treats is as effectively final.  Why is this 
restriction to final variables?  Why can't a lambda refer to a non-final 
local variable of the enclosing scope? 

The reason is that bindings to local variables collide with the intuitive 
understanding of local variables.  Of a variable that is local to a method we expect 
two things: 

 The local variable has a lifetime from where it is defined until the end 
of the method, and 

 local variables are invisible to other threads and therefore will never 
be subject to race conditions and are inherently thread-safe. 
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Both properties vanish as soon as a lambda expression has a binding to a local 
variable in the enclosing method.  The lambda expression may outlive the 
termination of the method, for instance if it is returned from the method or 
assigned to a field.  Along with the surviving lambda expression all bound local 
variables would stay around long after exit from the method.  In other words, a 
local variable's lifetime would no longer be tied to the local context in which it 
was defined.   

Furthermore, the local variable might be accessed concurrently, if for instance the 
local variable is bound to a lambda that is passed to another thread and executed 
concurrently.  This would introduce an entirely new category of race conditions, 
namely race conditions for local variables - which traditionally have been thread-
safe because they are created on the stack and for this reason inaccessible to other 
threads.  Detecting and correctly handling race conditions is error-prone to begin 
with and adding even more opportunities for race conditions adds to the 
complexity of multi-threading. 

The loss of the local variables' two expected properties - limited lifetime 
and thread-safety - is acceptable if the local variables are immutable.  If a 
variable is never modified then there is no potential for race conditions; it 
simply does not matter where and when the immutable value is read or 
whether this read access happens sequentially or concurrently.  For this 
reason, the binding to local variable of the enclosing method is restricted 
to immutable, i.e., final variables.  

For illustration, let us study an example. 

Example #1: Binding to a Local Variable of a Primitive Type 

Example of a lambda expression with a binding to local variables of the enclosing 
method: 

 
Runnable[] makeTasks() { 
  int cnt = 0; 
 
  Runnable incrTask = () -> { 
    while (true) { 
       cnt++; // error: variable must be effectively final 
    } 
  }; 
 
  Runnable watchTask  = () -> { 
    do { 
        // nothing 
    }  while(cnt < 100_000 ); 
    System.out.println(Thread.currentThread().getName() 
                       +": stops at "+cnt); 
  }; 
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  return new Runnable[] {watchTask,incrTask}; 
} 

 

The local variable cnt is declared inside method makeTasks.  The variable cnt is 
used in the two lambda expressions that appear in the method.  Both lambdas 
implement the Runnable interface and will be executed asynchronously in 
separate threads.  

 
class Test { 
  
    public static void main(String... args) { 
        Runnable[] tasks =  makeTasks(); 
 
        watchdog[i] = new Thread(tasks[0],"watchdog"i); 
        incrementer[i]  
                    = new Thread(tasks[1],"incrementer"i); 
        incrementer[i].setDaemon(true); 
 
        watchdog[i].start(); 
        incrementer[i].start(); 
    } 
} 

 

If the lambdas run in different threads, there is concurrent access to the integral 
value cnt declared locally in the makeTasks method.  One of the accesses is a 
modification, namely the attempted increment that the compiler rejects as an 
error.  Concurrent access to mutable data is error-prone.  The example, for 
instance, has a visibility problem.  The watchdog thread might see a stale value of 
cnt, e.g. the initial value 0, although the incrementer thread keeps incrementing 
the cnt until overflow and beyond.  Without proper precautions this tiny 
program is incorrect. 

Fortunately, the compiler refuses to compile the incorrect program.  The 
cnt variable must be effectively final and the compiler flags the 
attempted increment as an error.  If the cnt variable were indeed 
(effectively) final, then all access in all lambdas would be non-mutating, 
which is thread-safe and does not have visibility problems.  Essentially, 
the restriction to (effectively) final variables is a precaution in order to 
prevent errors and to ease use of lambda expressions and name binding. 
binding to reference 

Example #2: Binding to a Local Variable of a Reference Type 

In the case study above the local variable in question was of a primitive type, 
namely an int variable.  What happens if the local variable is of a reference type?  
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References, too, must be effectively final if lambda expressions want to 
bind to them. The required explicit or implicit final declaration on a 
reference only affects the reference variable itself, but not the referenced 
object.  That is, we must not modify the bound reference variable, but we 
may modify the referenced object.  This perfectly makes sense.   

The reference variable itself is placed on the stack of the method in which 
it is local.  Its lifetime is tied to the method.  This is exactly the same as 
for the primitive type local variable.  

The referenced object, in contrast, is allocated on the heap and its lifetime is 
independent of the method and instead tied to the fact whether the object is 
reachable or unreachable. We also know that we are responsible to ensure thread-
safety if we make an object accessible to multiple threads. 

 

The previously studied example could be re-written using a local reference 
variable instead of a primitive type variable. We need a reference to a thread-safe 
counter and for this purpose we use a LongAdder from package 
java.util.concurrent.atomic. 

 

Example of lambda expressions with bindings to a local reference variable of the 
enclosing method: 

 
Runnable[] makeTasks() { 
  final LongAdder cnt = new LongAdder(); 
 
  Runnable incrTask = () -> { 
    while (true) { 
       cnt.increment(); 
    } 
  }; 
 
  Runnable watchTask  = () -> { 
    do { 
        // nothing 
    }  while(cnt.intValue() < 100_000 ); 
    System.out.println(Thread.currentThread().getName() 
                       +": stops at "+cnt.intValue()); 
  }; 
 
  return new Runnable[] {watchTask,incrTask}; 
} 

 

In this version the compiler no longer issues error messages, because the 
reference variable cnt to which the lambda expression binds is final - as is 
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required.  The referenced LongAdder object is thread-safe and it is expressly 
designed for efficient, concurrent modification. 
array boxing hack 

Example #3: Binding to a Local Variable of an Array Type 

The fact that final references only prevent modification of the reference itself, 
but permit modification of the referenced object allows for bugs and errors.  The 
example above is correct, because the reference refers to a thread-safe LongAdder 
object.  Using references it is easy to make mistakes and inadvertently use a 
reference to a thread-unsafe object.  Below is a version that demonstrates the 
potential pitfall. 

Incorrect example of lambda expressions with bindings to local reference 
variables of the enclosing method: 

 
Runnable[] makeTasks() { 
  final int[] cnt = new int[] {0}; 
 
  Runnable incrTask = () -> { 
    while (true) { 
       cnt[0]++; 
    } 
  }; 
 
  Runnable watchTask  = () -> { 
    do { 
        // nothing 
    }  while(cnt[0] < 100_000 ); 
    System.out.println(Thread.currentThread().getName() 
                       +": stops at "+cnt[0]); 
  }; 
 
  return new Runnable[] {watchTask,incrTask}; 
} 

 

The counter is now a reference to an int-array of size 1 whose one and only 
entry contains the actual count value. Since we are using a final reference to the 
array, the compiler does not complain.  Yet the example is incorrect.  It has 
serious visibility problems: there is no guarantee that the watchdog thread will see 
the modifications produced by the incrementer thread.   

The Array Boxing Hack 

By the way, the above demonstrated approach is known as the so-called array 
boxing hack.  It might occasionally be useful if you need to work around the 
"effectively final" restriction, which might be acceptable in single-threaded 
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situations.  Still, it is error-prone.  Don't use the array boxing hack unless you fully 
understand the implications of what you are doing. 
effectively final 

Effectively Final Variables in Inner Classes 

Note that the lambda expressions' restricted binding to effectively final variables 
of the enclosing scope is in line with the behaviour of anonymous and local inner 
classes.  Anonymous and local inner classes also may have bindings to local 
variables of the enclosing scope.  Traditionally, the binding was permitted only to 
explicitly final variables of the enclosing scope; since Java 8 we can omit the 
explicit final declaration and the compiler treats the bound variables as 
effectively final.   The reasoning for the restriction to effectively final local 
variables is exactly the same as for lambda expressions. 
binding to fields 

No Restrictions for Bindings to Fields 

In the previous section we discussed the binding of a name used in a 
lambda to a locale variable of the lambda's enclosing scope.  A lambda 
expression can refer to other kinds of entities from enclosing scopes, e.g. 
a lambda expression may refer to a field defined in the enclosing class.  
The binding to a field of the enclosing class is not restricted to final or 
effectively final fields.  

Here is an example of a lambda expression with bindings to its enclosing 
class's fields:   
class UnrestrictedAccessToFields { 
  private static int staticField = 0; 
  private        int nonStaticField = 0; 
         
  public void demonstrate() { 
    int localVariable = 0; 
    new Thread(()-> { 
      staticField++;    // fine 
      nonStaticField--; // fine 
      localVariable++;  // error: local variable must be final 
    }).start(); 
  } 
} 

 

Inside the lambda expression the two fields are modified, which illustrates 
that the fields are neither final nor effectively final. 

Fields and local variables are treated differently because they have 
different lifetime.  As explained earlier (see section "Binding Restricted to 
Implicitly Final Variables") the reason for the "effectively final" 
restriction is the local variables' short lifetime.   
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The lifetime of a local variable is tied to the execution of the method in 
which it is defined, whereas the lambda itself might live longer.  It must 
be prevented that a lambda expression defined in a method modifies local 
variables.  For this reason, it can only bind to effectively final local 
variables. 

The lifetime of a class's field, in contrast, exceeds the execution of the 
class's methods. There is no need to prevent that a lambda defined in a 
method modifies the class's fields.  Hence the lambda can also bind to 
non-final fields and modify them. 

 

Wrap-up 

Names declared and used in a lambda expression are treated differently from 
names declared in a method or local or anonymous inner class.   

 Declared names. 

A name declared in a lambda expression contributes to the lambda's 
enclosing context and collides with the same name declared in the 
lambda's enclosing context.   

In contrast, a name declared in a method or local or anonymous inner class is an 
entity of its own and shadows corresponding names in the enclosing scope. 

Used, but not declared names.  

A name used, but not declared in a lambda expression has the same 
meaning that it has in the lambda's enclosing context.  The binding to 
local variables of the enclosing scope is only permitted for effectively final 
variables.  The binding to fields of the enclosing class is not restricted to 
final fields.   

The same holds for a name used, but not declared in a method or 
local or anonymous inner class.   

this and super.  

In a method or lambda expression this and super refer to an instance 
of the enclosing class type (or its superclass part). 

In contrast, in local or anonymous inner classes this and super refer 
to an instance of the inner class type (or its superclass part). 
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The Meaning of  Jumps and Exits 

In the previous section we learnt that names in a lambda expression have the 
same meaning as they have in the enclosing context.  This bears the question 
whether keywords such as break, continue, return, and throws also have the 
same meaning that they would have in the enclosing context.  This, however, is 
not true. 

Keywords such as break, continue, return, and throw have the same meaning 
in a lambda expression that they have in a method.  For instance, a return 
statement in a method triggers exit from the method.  So does a return 
statement in a lambda expression: it triggers exit from the lambda expression. 
Keywords such as break, continue, return, and throw affect only the lambda 
expression, but never the enclosing method. 

It was discussed during the design of lambdas whether so-called non-local 
jumps should be allowed, but eventually it was decided that there will be no 
support for non-local jumps in Java 8. 
break / continue 

Local vs. Non-Local Jumps 

In Java, the keyword break is only allowed in loops or switch statements and the 
keyword continue can only be used in loops.   They permit jumps out of the 
loop or switch statement (break) or to the end of the loop body (continue).  
These rules hold for both methods and lambda expression.  There is no 
difference.   

For instance, if a lambda expression's body contains a loop, then we can break 
out of the loop using the break statement. 
Consumer<int[]> reader = array -> { 
  for (int i : array) { 
    if (i < 0) 
       break;                                       // fine 
    ... 
  } 
}; 
 

 Non-local jumps are not supported in Java, i.e. a break or continue statement in a 
lambda expression does not affect the lambda's enclosing context. 

Example of an illegal break statement in a lambda expression: 
void test(String... args) { 
  IntConsumer reporter = i -> { 
    System.err.println("illegal argument size "+i); 
    break;            // error: break outside switch or loop    
  };         
 
  for (String s : args)  { 
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    if (s.length() == 0) { 
       reporter.accept(0); 
    } 
    ... 
  } 
}  
 

A break statement is only allowed in a loop or switch statement.  Since the 
lambda body does not contain a loop, the compiler issues an error message.  As a 
result there is no way that a jump statement in a lambda expression has any effect 
on the control flow of its enclosing method.  

The example above can be fixed by placing the break statement in the enclosing 
method rather than the lambda. 

Example, same as above, but non-local jump eliminated: 
void test(String... args) { 
  IntConsumer reporter = i -> { 
    System.err.println("illegal argument size "+i); 
  }; 
  for (String s : args)  { 
    if (s.length() == 0) { 
       reporter.accept(0); 
       break;                                        // fine 
    } 
    ... 
  } 
}  

 

Now, the break statement appears in the loop of the enclosing method, which is 
permitted and fine. 
return / throw 

Return and Throw Statements in Lambda Expressions 

The statements return and throw terminate the lambda expression in which they 
appear, but never cause exit from the enclosing method. 

Example of return in a lambda expression: 
void test(String... args) { 
  IntConsumer reporter = i -> { 
    System.err.println("illegal argument size "+i); 
    return;                         // terminates the lambda  
  };         
 
  for (String s : args)  { 
    if (s.length() == 0) { 
       reporter.accept(0);                         
    } 
    ... 
  } 
}  
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A return statement in a lambda expression triggers exit from the lambda body.  
It does not mean that the enclosing method terminates.  In the example above, 
the return statement would end the lambda body, but not the test method. 

If we want to end the test method we need to add a return statement to the 
method rather than the lambda. 

Example, same as above, but with return in enclosing method: 
void test(String... args) { 
  IntConsumer reporter = i -> { 
    System.err.println("illegal argument size "+i); 
  }; 
  for (String s : args)  { 
    if (s.length() == 0) { 
       reporter.accept(0); 
       return;                // terminates the test method 
    } 
    ... 
  } 
}  
 

Now, the return statement appears in the enclosing method and terminates it. 

 

The lambda expression can, of course, contain return statements for termination 
of the lambda body and/or passing back return values.  The use of the return 
statement in a lambda expression is exactly the same as in methods. 
Function<String,String> extractor = s -> { 
  if (s.charAt(0) == '+' || s.charAt(0) == '-') 
    return s.substring(1, s.length()); 
  else 
    return s; 
}; 
 

If there are multiple return statements in a lambda body, the types of the 
returned values may differ.  The compiler looks for a common supertype of all 
return values and deduces the common supertype as the lambda expression's 
return type. 

 

The rules throw statements are similar. A throw statement terminates the 
lambda expression (with an exception instead of a return value) and does 
not have any immediate effect on the enclosing method.  If the enclosing 
method does not catch the exception thrown by the lambda, then the 
enclosing method also terminates with an exception. But this is due to the 
rules for exception propagation and handling and has nothing to do with 
lambdas. The effect of a throw statement in a lambda expression is exactly 
the same as in a method.   



Lambda Expressions 49 

 

recursive lambdas 

Recursive Lambda Expressions 

Occasionally, one might need a function that recursively invokes itself.  
This can easily be achieved by means of anonymous inner classes.   Here 
is an example of such a recursive function: 
File[] findFiles(String dirname) { 
  final File myDir = new File(dirname); 
 
  if (myDir.isDirectory()) { 
    final List<File> files = new ArrayList<>(); 
    final FileFilter filter = new FileFilter() { 
                public boolean accept(File f) { 
                    if (f.isDirectory()) { 
                        files.addAll(Arrays.asList 
                                    (f.listFiles(this))); 
                        return false; 
                    } else { 
                        return f.isFile(); 
                    } 
                } 
    }; 
    files.addAll(Arrays.asList(myDir.listFiles(filter))); 
    return files.toArray(new File[files.size()]); 
  } else { 
    return null; 
  } 
} 
 

In this example, the listFiles method is invoked for a directory.  The file filter 
passed to the listFiles method returns true for each file in the directory and 
false for each directory in the directory.  It addition, for each directory in the 
directory the listFiles method is invoked with the same file filter.  This way, all 
files in all directories are recursively collected in a list and eventually returned.   

This is a situation where the file filter uses itself recursively in its own 
implementation.  This is possible because the file filter is provided as an instance 
of an anonymous inner class.  In the body of the class's accept method the file 
filter refers to itself via the this keyword.  The file filter does so in order to pass 
itself to the listFiles method as the required file filter.   

No such recursive use is possible with lambda expressions. Here is an attempt of 
such a recursive lambda expression.  Note that it does not compile. 
File[] findFiles(String dirname) { 
  final File myDir = new File(dirname); 
 
  if (myDir.isDirectory()) { 
     final List<File> files = new ArrayList<>(); 
     final FileFilter filter = (File f) -> { 
          if (f.isDirectory()) { 
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              files.addAll(Arrays.asList(f.listFiles(filter)));  
                               // error: not yet initialized 
              return false; 
          } else { 
              return f.isFile(); 
          } 
     }; 
     files.addAll(Arrays.asList(myDir.listFiles(filter))); 
     return files.toArray(new File[files.size()]); 
  } else { 
     return null; 
  } 
} 
 

Due to lexical scoping, we cannot refer to the lambda expression inside the 
lambda expression's body via the this keyword.  The this keyword does not 
refer to the lambda expression, but is the this reference of the enclosing context.   

Our only chance to refer to the lambda inside the lambda is via a named variable.  
In this case we attempt to use the filter variable for this purpose.  The filter 
variable is a local variable and all local variables must be initialized before their first 
use.  When we use the filter variable in the definition of the lambda expression, 
the compiler rejects this use because the filter variable has not yet been 
initialized. 

It means that recursive use of lambda expressions is not supported and 
anonymous inner classes must be used instead. 
generic lambdas 

Generic Lambda Expressions Not Permitted 

Generic lambda expressions are not permitted in Java and they are a corner case.   
This section explains under which circumstances you might miss the feature and 
how you can cope.  It is likely that you will never need a generic lambda 
expression. Feel free to skip the section if you are not interested in exotic, rarely 
encountered issues. 

When would we need a generic lambda expression?   

Consider a functional interface whose single abstract method is generic:  If you 
wanted to provide an implementation for the abstract method by means of a 
lambda expression the lambda expression would have to be generic, too. As 
already mentioned, no such thing as a generic lambda expression exists.  There is 
no syntax for specifying type parameters for a lambda expression. 

Let us explore an example of a functional interface with a generic abstract 
method: 
interface Factory { 
  <T> Generic<T> make(); 
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} 
 

It uses a generic class Generic: 
class Generic<X> { 
  ... 
} 
 

The following lambda expressions are illegal: 

Factory f1 = ()->new Generic<>();    // error: lambda is not generic 
Factory f2 = ()->new Generic<?>();   // error: illegal construction 
Factory f3 = ()->new Generic<Long>();// error: lambda is not generic 
 

The lambda expressions are illegal because they all boil down to a non-generic 
method that takes no arguments, does not throw exceptions, and returns an 
object of a parameterization of the generic class Generic.  The left-hand side of 
the assignment, in contrast, requires a function that is generic and takes no 
arguments, does not throw, and returns a parameterization of Generic. The 
lambdas expressions almost match - except that they do not have a type 
parameter. 

You might want to try something like this in order to specify a type parameter for 
the lambda expression, but the syntax does not exist: 

Factory f4 = <T>()->new Generic<T>();// error: illegal syntax 
 

Ultimately, there is no way to specify type parameters for lambda expressions.  
Lambda expressions are always non-generic.  

How do we cope with the lack of generic lambda expressions?   

Instead of a lambda expression we can use a method reference or an anonymous 
inner class.  

Here is a solution using an anonymous inner class: 
Factory f5 = new Factory() { 
  public <T> Generic<T> make() { return new Generic<T>(); } 
}; 
 

Implementing the functional interface by means of an anonymous inner 
class is no problem at all.  Just define the required make method as a 
generic method.   

Here is a solution using a constructor reference: 
Factory f6 = Generic::new; 
 

The expression Generic::new is a constructor reference. Since Generic is a generic class its constructor can serve as a generic function.  
Method and constructor references are explained in the subsequent section on "method / constructor references 

Method and Constructor References". 
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method / constructor references 

Method and Constructor References 
Along with lambda expressions, method references and constructor references were added 
to the language in Java 8.   A method or constructor reference refers to a method 
or constructor without invoking it.  They are a syntactic shortcut for creating a 
lambda expression out of an existing method/constructor. 

Consider a lambda expression that is used as file filter in the listFiles method 
of class java.io.File: 
File[] files = myDir.listFiles(  
   (File f) -> { return f.isFile(); }  
); 
 

It takes a reference to a File object, calls its isFile method, and returns the 
method's result.  

With a method reference we can simply say: use the isFile method.  It looks like 
this: 
File[] files = myDir.listFiles( File::isFile ); 
 

In the example File::isFile denotes a reference to a non-static method.  There 
are also references to static methods (e.g. System::gc) and reference to 
constructors (e.g. ArrayList::new).  

 

Method and constructor references consist of a qualifier, the :: symbol, and a 
method name.  Let us begin with a simplified version of the syntax of method 
and constructor references.  The actual syntax production in the Java language 
specification is more complex and detailed:  We will address some of the details 
later.  

Here is a simplified version of the syntax: 
ConstructorReference: 
 TypeName       '::' 'new' 

MethodReference: 
 Expression '::' Identifier 
 TypeName   '::' Identifier 

 

For a constructor reference the qualifier is the name of a type. The new keyword 
serves as the name of the referenced constructor.  The qualifier type must allow 
instance creation, e.g. it cannot be the name of an abstract class or an interface, 
because no objects of an abstract class or interface type can be created.   
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For a method reference the qualifier can be a type or an expression.  The 
identifier is the name of the referenced method. An expression can only be used 
as the qualifier for non-static methods; the expression then is the object on which 
the method is invoked.  Static methods are always referenced with a type name as 
the qualifier.  

In the following we take a closer look at references to the various types of 
methods: 

 constructors 
 static methods 
 non-static methods 
constructor references 

Reference to Constructor 

References to constructors have the form: 
ConstructorReference: 
 ClassType '::' NonWildTypeArgumentsopt 'new' 
 ArrayType '::' 'new' 

 

where new is the name of the constructor and the qualifier is either a ClassType 
or an ArrayType.  The class type must be a type that permits creation of 
instances.  It can not be the name of an abstract class, an interface, or of an 
enumeration type.  All of these types do not permit creation of objects.   

The optional NonWildTypeArguments are for the explicit specification of the type 
arguments of a generic constructor.  This is needed for the rare cases in which the 
compiler cannot automatically infer the type arguments. 

Here are examples of references to constructors: 

reference to constructor equivalent lambda expression 

String::new () -> new String() 

or  
(String s) -> new String(s) 

or  
(value, offset, count)  

 -> new String   

      (value,offset,count) 

ArrayList<String>::new () 

-> new ArrayList<String>() 
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String[]::new size -> new String[size] 

int[]::new (int size) 

 -> new int[size] 

Outer.StaticInner::new () 

-> new Outer.StaticInner() 

Outer.NonStaticInner::new (Outer outer) 

-> outer.new  

          NonStaticInner() 

Tuple<Number>::<Long>new (Tuple<Long> pair) 

-> new Tuple<Number>(pair) 
 

Here is an example that illustrates the use of constructor reference. We 
have stream of floating point values and want to store the values in a list.   
Stream<Double> doubles = … 
Collector<Double,?,LinkedList<Double>> listCollector  
    = Collectors.toCollection(LinkedList<Double>::new); 
LinkedList<Double> list = doubles.collect(listCollector); 
 

The example uses abstractions from the JDK package java.util.stream. 
The Stream interface describes a sequence of elements; in our example the 
element are floating point values of type Double.  The Stream interface has 
a collect method that stores the stream's elements in a data store.  A data 
store can for instance be a collection; in our example we want to use a 
LinkedList<Double> as the data store.  The collect method needs a 
collector that knows how to create the data store.  For creating collectors 
there is a helper class named Collectors; it has a toCollection factory 
method.  It needs a Supplier that eventually provides the collection.  In 
our example the supplier is the constructor of class LinkedList<Double>., 
denoted via the constructor reference LinkedList<Double>::new. 
reference to overloaded constructor 

There is no support for specifying a particular signature to be matched, 
like for instance String::new(), String::new(String), 
String::new(StringBuilder), String::new(StringBuffer), or 
String::new(char[], int, int). When the constructor is overloaded, i.e. 
if there is more than one constructor, the appropriate constructor is 
selected based on the type inference context.  

Here is an example that refers to two overloaded constructors of class 
String, namely String(StringBuilder) and String(StringBuffer): 
Stream<StringBuilder> builders = … 
Stream<String> strings = builders.map(String::new); 
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Stream<StringBuffer> buffers = … 
Stream<String> strings = buffers.map(String::new); 
 

The compiler picks the right constructor depending on the context in 
which the constructor reference appears. 
reference to generic constructor 

Similarly, the meaning of a reference to a generic constructor depends on 
the context.  Consider the following generic class with a generic 
constructor:  
class Tuple<A> { 
    private A fst, snd; 
    public <X extends A> Tuple(Tuple<X> other) { 
        fst = other.fst; 
        snd = other.snd; 
    } 
} 
 

The constructor reference Tuple::new can refer to various parameterizations 
such as Tuple<String>::<String>new, Tuple<Number>::<Long>new, or 
Tuple<Object>::<Date>new.  The compiler selects the appropriate 
parameterization for each given context. 

Here are some examples of a context in which the constructor reference 
Tuple::new appears:   
Function<Tuple<String>,Tuple<String>> ctorRef  
     = Tuple::new;                 // refers to Tuple<String>::<String>new 
Function<Tuple<Long>,Tuple<Number>>   ctorRef 
     = Tuple::new;                     // refers to Tuple<Number>::<Long>new 
Function<Tuple<Date>,Tuple<Object>>   ctorRef  
     = Tuple::new;                     // refers to Tuple<Object>::<Date>new 
 

where Function is the functional interface java.util.function.Function: 
@FunctionalInterface 
public interface Function<T, R> { 
    public R apply(T t); 
} 
 

Here is an example that uses references to different parameterizations of 
the generic Tuple constructor: 
Stream<Tuple<Number>> numbers = … 
Stream<Tuple<String>> strings = … 
Stream<Tuple<Object>> objects = 
Stream.concat(numbers.map(Tuple::new),strings.map(Tuple::new)); 
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The concat method of interface Stream concates two sequences.  It requires two 
arguments, both of which must be streams of the exact same type.  In the 
example above we have two streams of different type, namely a 
Stream<Tuple<Number>> and a Stream<Tuple<String>> and we intend to 
concatenate them to a Stream<Tuple<Object>>.  In order to produce a stream 
of object tuples the concat method needs two streams of object tuples and we 
must convert the two input streams to the required type before we can pass them 
to the concat method.  We achieve the conversion by mapping the number and 
string tuples to object tuples; as a mapping functions we use the constructors 
Tuple<Object>::<Number>new and Tuple<Object>:: <String>new.  As the 
context provides enough information for type inference, we can denote both 
constructors as Tuple::new; the compiler does the rest and automatically infers 
the omitted type parameters. 

A detailed discussion of the process of selecting an appropriate signature (in case 
of overloading) or an appropriate parameterization (in case of generics) is given 
later in the section on "Target Typing". 
reference to static method 

Reference to Static Method 

References to static methods have the form: 
MethodReference: 
 ReferenceType '::' NonWildTypeArgumentsopt Identifier 

 

where Identifier is the name of the static method and ReferenceType is the 
name of method's declaring type. The optional NonWildTypeArguments are for 
the explicit specification of the type arguments of a generic method.  This is 
needed for the rare cases in which the compiler cannot automatically infer the 
type arguments. 

Here are examples of references to static methods: 

reference to static method equivalent lambda expression 

String::format (String fmt, Object... args)  

-> String.format(fmt,args) 

System::currentTimeMillis () 

 -> System 

   .currentTimeMillis() 

Arrays::toString Array 

 -> Arrays.toString(array) 
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Arrays::asList Array 

 -> Arrays.asList(array) 

Arrays::<String>asList (String[] array) 

 -> Arrays.asList(array) 

or  
Array 

 -> Arrays 

    .<String>asList(array) 

TimeUnit::values () -> TimeUnit.values() 

Enum::valueOf (type,name) 

 -> Enum.valueOf(type,name) 

TimeUnit::valueOf (type,name) 

 -> TimeUnit.valueOf 

              (type,name)  

or  
(Class<TimeUnit> type, 

 String name) 

-> { return TimeUnit               

      .valueOf(type,name);  

   } 

T::valueOf 

(for type parameter T extends 
Enum<T>)  

(Class<T> t, String s) 

 -> T.valueOf(t, s) 

Collections::sort List 

 -> Collections.sort(list) 

or  
(list ,comparator)  

 -> Collections.sort 

           (list,comparator) 

 

Here is an example that uses references to static methods: 
String s = DoubleStream.of(1, 2, 3) 
                .map(Math::log) 
                .mapToObj(Double::toString) 
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                .collect(Collectors.joining(",  ")); 
 

It produces the following string:  
0.0,  0.6931471805599453,  1.0986122886681098 
 

We create a stream of three floating point values, map them to their logarithms 
using the static log method from class Math, map the logarithms to strings using 
the static toString method from class Double, and eventually concatenate the 
strings to a single string using  a string collector with delimiters. 

 

When a static method is overloaded, i.e. if there is more than one method with 
the same name, the appropriate method is selected based on the type inference 
context.  For instance, class Collections has two static methods named sort 
one that takes a list and another one that takes a list plus a comparator.  Which 
one is referenced via the method reference Collections::sort depends on the 
context. 

Similarly, the meaning of a reference to a generic method depends on the context.  
For example, the method reference Arrays::asList can refer to various 
parameterizations such as Arrays::<String>asList, Arrays::<Date>asList, or 
Arrays::<Long>asList.  The compiler selects the appropriate parameterization 
for each given context. 

Here is an example that uses a reference to a generic static method: 
Map<Class<? extends Enum<?>>,List<Enum<?>>>  
             getValueMap(Class<? extends Enum<?>>... enumTypes) { 
 
  Map<Class<? extends Enum<?>>,List<Enum<?>>> values  
    = new HashMap<>(); 
 
  for (Class<? extends Enum<?>> enumType : enumTypes)   { 
    Function<Class<? extends Enum<?>>,Enum<?>[]> getEnumConstants  
      = c -> c.getEnumConstants(); 
    Function<Enum<?>[],List<Enum<?>>> convertToList  
      = Arrays::asList; 
    values.computeIfAbsent(enumType,                
                        getEnumConstants.andThen(convertToList)); 
  } 
  return values; 
} 
 

In this example we create a map that associates an enum type with the list of the 
enum constants for the respective enum type.  The map is populated using the 
computeIfAbsent method from interface Map.  It takes a mapping function that 
computes the associated values for a given key.  In our example the mapping 
function must compute a list of enum constants for each enum type.  We provide 
the mapper function by composing two functions: the first function 
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(getEnumConstants) retrieves all enum constants for the enum type and returns 
them as an array; the second function (convertToList) turns the array into a list.  
The composition is achieved via the andThen method of interface Function.  
The second function in the composition is denoted by a reference to the static 
generic method asList from class Arrays.  Its type parameter, which would be 
Enum<?> in our example, is automatically deduced by the compiler. 
reference to non-static method 

Reference to Non-Static Method 

If we want to invoke a non-static method we need an object on which the non-
static method can be invoked.  This target object is the so-called receiver.  We can 
provide the receiver explicitly (as an expression) or we can supply it implicitly, i.e., 
later when the method is invoked. 

Accordingly, references to non-static methods have the form: 
MethodReference: 
 Expression     '::' NonWildTypeArgumentsopt Identifier 
 ReferenceType  '::' NonWildTypeArgumentsopt Identifier 

 

where Identifier is the name of the non-static method and ReferenceType is 
the name of method's declaring type.   Details will be discussed in the subsequent 
sections; we will discuss which of the two forms (with or without a receiver) is 
best used in which situation. 

The optional NonWildTypeArguments are for the explicit specification of the type 
arguments of a generic method.  This is needed for the rare cases in which the 
compiler cannot automatically infer the type arguments. 

Unbound Receiver 

An example of a reference to a non-static method with an unbound receiver is 
String::length.  The length method as such is a non-static method defined in 
class String; it takes no argument and returns an int value.   

The method itself is not to be confused with the method reference 
String::length.  A reference to a non-static method always needs a receiver 
object.  The receiver object in the example of String::length is a String object 
that is used when the length method is invoked via the method reference.  
Obviously, the method reference String::length does not specifiy any 
particular string object as the receiver.  This is why we talk of an unbound receiver. 

If the receiver is not specified as part of the method reference, it must be supplied 
later when the method is called.  As a consequence the method reference 
String::length does not denote a method that takes no argument and returns 
an int value, as one might believe when looking at the length method's 
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signature.  Instead the method reference String::length denotes a method that 
takes one argument of type String, namely the receiver object, and returns an 
int value.   In other words, the method reference String::length has the 
signature (String) -> int because it is equivalent to the lambda expression 
(String s) -> { return s.length(); }. 

This might be slightly confusing at first sight.  So, take a mental note of the fact 
that method references to non-static method with an unbound receiver always 
take an additional first argument, namely the receiver. 

Here is an example that illustrates the use of the method reference 
String::length: 

static double averageStringLength(String... strings) { 
  return Arrays.stream(strings) 
               .mapToInt(String::length) 
               .average() 
               .getAsDouble(); 
} 
 

For a stream of strings its elements (the strings) are mapped to integer values 
(their string length), the average is calculated and returned.  As a mapper the 
method reference String::length is used, which demonstrates that 
String::length is a function that takes a String and returns an int. 

Here are further examples of references to non-static methods with an unbound 
receiver.  

reference to unbound non-
static method  

equivalent lambda expression 

String::length (String s) -> s.length() 

List::equals (lhs, rhs)  
 -> lhs.equals(rhs) 

List<Long>::equals (List<Long> lhs,  
 Object rhs)  
 -> lhs.equals(rhs) 

Logger::log (Logger logg, Level sev, String 
msg)  
 -> logg.log(sev,msg) 

int[]::clone (int[] a) -> a.clone() 
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Collection::toArray c -> c.toArray() 

or  
(Collection<?> c) 
 -> c.toArray() 

or  
(Collection<String> c)  
 -> c.toArray() 

Collection::toArray 

or  
Collection<Number> 
::toArray 

or  
Collection 
::<Long>toArray 

or  
Collection<Number> 
::<Long>toArray 

(Collection<Number> c, Long[] a)  
 -> c.toArray(a) 

T::ordinal 

(for type parameter T extends 
Enum<T>) 

(T t) -> t.ordinal() 

Outer.Inner::innerMethod (Outer.Inner inner)  
 -> inner.innerMethod() 

Thread 
.UncaughtExceptionHandler
::uncaughtException 

(h, t, e)  
-> h.uncaughtException(t,e) 

or  
(Thread.UncaughtExceptionHandler h 
,Thread t 
,Throwable e) 
-> h.uncaughtException(t,e) 

 

Here is another example in which a reference to a non-static method with 
unbound receiver is used: 
static <T> Class<?>[] whichTypes(T[] array) { 
        return Arrays.stream(array) 
                     .map(T::getClass) 
                     .collect(Collectors.toSet()) 
                     .toArray(new Class<?>[0]); 
} 
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All elements in a stream of objects of unknown type T are mapped to their 
types, i.e., their corresponding Class objects.  The types are collected to a 
set, which is eventually converted to an array.  As a mapper function the 
method reference T::getClass is used.  As already pointed our earlier, the 
non-static method getClass takes no arguments, but the method 
reference T::getClass does take an argument.  Since the method 
reference T::getClass does not specify the receiver object, it denotes a 
function that takes an object of unknown type T (the receiver) and returns 
its type (as a Class object). 

Bound Receiver 

In the previous section we used references to non-static methods where the 
receiver was not specified.  Naturally, we can choose to provide a particular 
receiver object as part of the method reference.  In this case we talk of a bound 
receiver.  

An example of a reference to a non-static method with a bound receiver is 
System.out::println.  If refers to the println method of class PrintStream 
and specifies that the println method will be applied to a particular receiver 
object, namely the standard output stream System.out.  The method reference 
System.out::println has the signature (Object)->void and is equivalent to 
the lambda expressions (Object o) -> System.out.println(o). 

The method reference System.out::println is frequently used for debugging 
purposes like in the following code snippet: 
static List<String> findStringIn(String match, String[] strings){ 
        return Arrays.stream(strings) 
                .peek(System.out::println) 
                .filter(s->match.equals(s)) 
                .peek(System.out::println) 
                .collect(Collectors.toList()); 
} 
 

A filter is applied to an array of string.  Via the peek operation the strings are 
printed to System.out before and after filtering in order to check whether the 
filter has the expected effect. 

Each time we want to specify the receiver explicitly, we must use an expression 
that refers to the receiver.   In the example above the expression in question was 
System.out.  More generally, the expression is of the form: 
Expression: 
 ExpressionName  
 Primary  
 'super' 
 TypeName '.' 'super'  
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Here are further examples of references to non-static methods, where the receiver 
is explicitly specified: 

reference to unbound non-
static method 

equivalent lambda expression 

Thread 
.currentThread() 
.getName()::length 

()  
-> Thread.currentThread() 
         .getName().length() 

"xyz"::length () -> "xyz".length() 

this::equals other -> this.equals(other) 

super::equals other -> super.equals(other) 

Logger 
.getLogger("global")::log 

(Level sev, String msg) 
-> Logger.getLogger("global") 
         .log(sev,msg 

new int[] {1,2}::clone () -> new int[] {1,2}.clone() 

new Thread()::start () -> new Thread().start() 

new 
Thread(Framework::test) 
::start 

()  
-> new Thread( 
    ()->Framework.test() 
   ).start() 

Arrays.asList(1L,2L,3L) 
::toArray 

or  
Arrays.asList(1,2,3) 
::<Long>toArray 

a  
-> Arrays.asList(1L,2L,3L) 
         .toArray(a)  

 

or  
a  
-> Arrays.asList(1,2,3) 
         .<Long>toArray(a) 

or  
(Long[] a)  
-> Arrays.asList(1,2,3) 
         .toArray(a) 

Outer.this::outerMethod () -> Outer.this.outerMethod() 

Outer.super::hashCode () -> Outer.super.hashCode() 
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Let us consider another example of a reference to a non-static method 
with a bound receiver: 
static List<String> findStringIn(String match, String[] strings){ 
        return Arrays.stream(strings) 
                .filter(match::equals) 
                .collect(Collectors.toList()); 
} 
 

All strings from an input array (strings) are compared to a given string 
(match); all matching strings are collected in a result list, which is returned.  
As a filter the method reference match::equals is used.  It refers to the 
equals method of class String; the equals method is called on the 
receiver object match.  The method reference match::equals is equivalent 
to the lambda expression (String s) -> { return match.equals(s); }. 
The net effect of filtering with the predicate match::equals is that every 
string in the input stream is compared to the string object match.   

Method References in Action 

Here is a final, more complex example that shows method references in 
action.  Feel free to skip it if you have seen enough of method references 
for now.  The example illustrates how conveniently method references 
solve various problems, but it also points out certain limitations of 
method references. 

In the example we try to gather the ids of all runnable threads in an 
application: 
static Set<Long> findRunnableThreads() { 
  Function<ThreadInfo,Thread.State>  
  first      = ThreadInfo::getThreadState; 
  Function<Thread.State,Boolean>  
  second     = Thread.State.RUNNABLE::equals; 
  Function<ThreadInfo,Boolean>  
  isRunnableFunction = first.andThen(second); 
  Predicate<ThreadInfo>  
  isRunnablePredicate = isRunnableFunction::apply; 
 
  return Arrays.stream( 
    ManagementFactory.getThreadMXBean().dumpAllThreads(true,true) 
  ).filter(isRunnablePredicate) 
   .map(ThreadInfo::getThreadId) 
   .collect(Collectors.toSet()); 
} 
 

First, an array of ThreadInfo objects for all live threads is retrieved (via the 
ThreadMxBean's dumpAllThread method).  Through a filter 
(isRunnablePredicate) all runnable threads are selected, mapped to their 
thread ids, and the thread ids eventually stored in a set.   
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The predicate isRunnablePredicate takes a ThreadInfo object, retrieves 
the corresponding thread state (via ThreadInfo::getThreadState), 
compares the thread state to the runnable state (via RUNNABLE::equals), 
and returns the resulting boolean value.  The predicate 
isRunnablePredicate is essentially composed (via andThen) from the two 
functions ThreadInfo::getThreadState and RUNNABLE::equals.   

An additional complication stems from the fact that the result of 
combining two functions via the andThen method is again a function, and 
not a predicate.  More precisely, the composed function returned from 
andThen is of type Function<ThreadInfo, Boolean>, while we need a 
predicate of type Predicate<ThreadInfo>, which we can pass it to the 
stream's filter operation.  The only difference between a 
Function<ThreadInfo, Boolean> and a Predicate<ThreadInfo> is that the 
function has an apply method that returns a Boolean whereas the 
predicate has a test method that returns a boolean.  The conversion 
problem is easily solved by passing the method reference 
isRunnableFunction::apply to the stream's filter operation instead of the 
isRunnableFunction itself.  When the apply method is invoked, it returns 
a Boolean value, which is auto-unboxed to a boolean value, which matches 
the required return type of the predicate's test method - e voilà - the 
conversion problem is solved. 

By the way, the entire example can equally well be expressed without 
method reference, for instance like this: 
static Set<Long> findRunnableThreads() { 
  Predicate<ThreadInfo> isRunnablePredicate  
  = info -> info.getThreadState().equals(Thread.State.RUNNABLE); 
 
  return Arrays.stream( 
    ManagementFactory.getThreadMXBean().dumpAllThreads(true,true) 
  ).filter(isRunnablePredicate) 
   .map(ThreadInfo::getThreadId) 
   .collect(Collectors.toSet()); 
} 
 

You might wonder why the isRunnablePrediate is more compactly 
expressed via a lambda expression compared to the rather lengthy 
composition of method references we have seen earlier.  In principle we 
can condense the combination of method reference to a more compact 
notation.  Let us try it. 

Original composition using method references: 
Function<ThreadInfo,Thread.State>  
first               = ThreadInfo::getThreadState; 
Function<Thread.State,Boolean>  
second              = Thread.State.RUNNABLE::equals; 
Function<ThreadInfo,Boolean>  
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isRunnableFunction  = first.andThen(second); 
Predicate<ThreadInfo> 
isRunnablePredicate = isRunnableFunction::apply; 
 

An attempted compaction: 
Predicate<ThreadInfo> isRunnablePredicate 
= ThreadInfo::getThreadState                           // error 
 .andThen(Thread.State.RUNNABLE::equals) 
 ::apply; 
 

The elegant use of a lambda expression: 
Predicate<ThreadInfo> isRunnablePredicate 
= info -> info.getThreadState().equals(Thread.State.RUNNABLE); 
 

Our attempted compaction is rejected by the compiler with the error 
message "method reference not expected here".  This stems from the fact 
that a method invocation context is not permitted as a type inference 
context.  The section on "Target Typing" discusses type inference in 
detail.   For the time being, suffice to say that we would have to insert a 
cast in order to make it compile.  Then it looks like this: 

The attempted compaction, now fixed: 
Predicate<ThreadInfo> isRunnablePredicate 
= ((Function<ThreadInfo,Thread.State>)ThreadInfo::getThreadState) 
 .andThen(Thread.State.RUNNABLE::equals) 
 ::apply; 
 

Either way, the solution using a lambda expression is probably the most 
readable solution.   

Bottom Line: Method References vs. Lambda Expressions 

Method references provide a compact and readable notation for functions 
that look more complex when denoted by an equivalent lambda 
expression.  You have seen many such examples in the tables throughout 
this section.  The key reason for their readability and compactness is that 
the compiler infers practically everything for a method references (details 
of type inference are covered in the section on "Target Typing"). 

On the other hand, a limitation of method references is that they are not 
expected in front of the method selection symbol '.' in method calls.   
This complicates their composition via operations such as and, or, negate 
(from interface Predicate), compose, andThen (from interface Function), 
and chain (from interface Consumer). 
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Functional Interfaces 
functional interface 

Functional interfaces are a special category of interfaces. They are used in 
conjunction with the type deduction for lambda expressions and 
method/constructor references.   

When lambda expressions and method/constructor references were 
added to the Java programming language, the language designers tried to 
keep matters simple and to avoid major modifications of the language and 
its type system.  At the same time they had to add an entirely new concept 
to the language, namely the concept of "functions". Conceptually, both 
lambda expressions and method/constructor references express 
functions.  The most natural approach for adding such a new concept 
would have been to extend Java's type system and invent a new category 
of types, namely "function types" that describes functions and their 
signatures.  A function type could have looked like (int)->void for a 
function that takes int and returns void, for instance.  The language 
designers decided against such a major addition to the language's type 
system.  Instead, the looked for a way to integrate lambda expressions and 
method/constructor references into the language without inventing new 
types or type categories.  

The solution they came up with are functional interface types and a type 
inference process called target typing that figures out a matching functional 
interface type for each lambda expression or method/constructor 
reference.  Both functional interfaces and target typing did already exist in 
Java before lambda expressions and method/constructor references had 
been invented. 

The term "functional interface" is just a fancy name for an interface with 
one abstract method.  Interfaces with one method did exist in Java all 
along.  Examples are Runnable, Callable, and Comparable. 

The "target type", too, is a familiar concept in Java.  When an expression 
appears in a context, its type must be compatible with a type expected in 
that context.  The expected type is called the target type.  For lambda 
expressions and method/constructor references the target type is inferred 
by the compiler and must be a functional interface type.  

In the following we explore functional interfaces in further detail.  The 
process of  target type deduction is explained later in the section on 
"Target Typing". 
definition of functional interface 
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Definition 

A functional interface is an interface that has just one abstract method.1  
Many existing interfaces in the JDK have this property, e.g. Runnable, 
FileFilter and ActionListener.  In conjunction with the extension of the 
collection framework many more functional interfaces were invented.  
Here are a couple of simple, yet typical examples. 

Examples of simple functional interfaces (taken from the JDK source code): 
public interface Runnable { 
    public abstract void run(); 
} 
 
public interface Callable<V> { 
    V call() throws Exception; 
} 
 
public interface Comparable<T> { 
    public int compareTo(T o); 
} 
 
public interface FileFilter { 
    boolean accept(File pathname); 
} 
 
public interface AutoCloseable { 
    void close() throws Exception; 
} 

non-abstract methods in functional interfaces 

Functional Interfaces with Additional Non-Abstract 
Methods 

Functional interfaces must have exactly one abstract method.  In addition, 
the interface can have an arbitrary number of non-abstract methods.  These 
non-abstract methods can be default methods, methods inherited from 
class Object, or static methods. 

Example of a functional interface with a method inherited from class Object: 

@FunctionalInterface2 
public interface Comparator<T> { 
    int compare(T o1, T o2); 
    boolean equals(Object obj);               
       // not abstract; implementation inherited from Object 

                                                      

1 These interfaces were initially called SAM (single abstract method) Types.   

2 Note functional interfaces can be qualified by the @FunctionalInterface 
annotation.  It is discussed in the section on "Annotation @FunctionalInterface": 
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} 
 

The compare method is abstract, because it has no implementation. The equals 
method is non-abstract, although it has no implementation specified in the 
declaration of interface Comparator.  But every class inherits a default 
implementation of the equals method from class Object.  For this reason, the 
equals method is non-abstract and the Comparator interface is a functional 
interface. 

All public methods inherited from class Object are thus considered non-abstract 
methods.  This is different for protected methods inherited from class Object. 

Example of a functional interface with a protected method inherited from class 
Object: 
@FunctionalInterface 
public interface Producer<T> extends Cloneable { 
    T produce(); 
    Object clone();      // error; multiple abstract methods 
} 
 

The clone method is abstract, although it is inherited from class Object.  But the 
clone method is protected in class Object and thus no implementation is 
publicly available in a subclass of Object. For this reason, the clone method is 
considered abstract and the Producer interface is not a functional interface. 

Functional interfaces can have default static methods in addition to the single 
abstract method.  

Example of a functional interfaces with additional default method: 
@FunctionalInterface  
public interface Function<T, R> { 
  public R apply(T t); 
 
  public default <V> Function<V, R> compose 
                      (Function<? super V, ? extends T> before) { 
    Objects.requireNonNull(before); 
    return (V v) -> apply(before.apply(v)); 
  } 
  public default <V> Function<T, V> andThen 
                       (Function<? super R, ? extends V> after) { 
    Objects.requireNonNull(after); 
    return (T t) -> after.apply(apply(t)); 
  } 
  public static <T> Function<T, T> identity() { 
    return t -> t; 
  } 
} 
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The apply method is abstract, i.e., it has no implementation.  It is the functional 
method of interface Function.  All other methods have implementations.  The 
methods compose and andThen are default methods3.   The identity method is 
a static interface method4.  Default methods and static methods cannot be 
abstract; they always have an implementation.  The only abstract method is the 
apply method and for this reason the Function interface is a functional interface. 
@Functionalnterface annotation 

Annotation @FunctionalInterface 

Interface definitions can be marked with the annotation @FunctionalInterface.  
The @FunctionalInterface annotation is defined in package java.lang. 

Example of an interface with a @FunctionalInterface annotation: 
@FunctionalInterface 
public interface Readable { 
    public int read(java.nio.CharBuffer cb) throws IOException; 
} 
 

@FunctionalInterface is an informative annotation that indicates that an 
interface is intended to be a functional interface.  The compiler checks whether 
the annotated type is an interface and whether it has one abstract method.  
Otherwise it issues an error message. 

The purpose is to ensure that a functional interface remains a functional interface 
and is not inadvertently turned into a regular interface, for instance, by addition of 
another abstract method. 

Example of an error message triggered due to a @FunctionalInterface 
annotation: 
@FunctionalInterface 
private interface Producer<R>  {        
                    // error: not a functional interface 
  R produce(); 
  R produce(R arg); 
} 
 

Functional interfaces need not be qualified by the @FunctionalInterface 
annotation. The compiler treats any interface meeting the definition of a 
functional interface as a functional interface regardless of whether or not a 
@FunctionalInterface annotation is present on the interface declaration. 
generic functional interface 

                                                      

3 Default methods are discussed in the section on "Default Interface Methods". 

4 Static interface methods are covered in the section on "Static Interface Methods". 
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Generic Functional Interfaces 

Generic Interface 

Functional interfaces may be generic.  We have already seen several examples. 

Examples of generic functional interfaces: 
@FunctionalInterface 
public interface Callable<V> { 
    V call() throws Exception; 
} 
 
@FunctionalInterface 
public interface Comparator<T> { 
    int compare(T o1, T o2); 
} 
 
@FunctionalInterface 
public interface Function<T, R> { 
    public R apply(T t); 
} 
 

Non-Generic Interface with a Generic Single Abstract Method 

In these examples the functional interface is generic and the single abstract 
method uses the enclosing interface's type parameters.  It is even allowed that the 
single abstract method has its own type parameters.  Here is an example of a 
(contrived) non-generic functional interface with a generic method: 
@FunctionalInterface 
interface RecursiveExecutor { 
  <T> T execute(RecursiveTask<T> a); 
} 
 

Note, that functional interfaces with a generic method cannot be 
implemented by means of lambda expressions, because generic lambda 
expressions are not permitted5.  Only a method reference may be used as 
the implementation of the functional interface RecursiveExecutor, like in 
this example: 
RecursiveExecutor pool = ForkJoinPool.commonPool()::invoke; 

 
parameterization of generic interface raw type of generic interface 

                                                      

5 See the sections on "Generic Lambda Expressions" and on "Type Inference " for details.   
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Raw Types and Parameterizations of Generic Interfaces 

Consider a generic interface that is a functional interface like for instance 
Callable<V>.  If we replace the type parameter V by a concrete type, then 
the resulting parameterization of the generic interface is functional, too.   
That is, Callable<String>, Callable<Long>, etc. are a functional interface 
as well.  

The same holds if we drop the type parameters altogether and use the raw 
type.  That is, the raw type Callable is a functional interface, too. 

Below are examples of subtypes of parameterizations and raw forms of a generic 
functional interface:  The comments denote the respective inherited single 
abstract method. 
@FunctionalInterface 
public interface StringCallable extends Callable<String> { 
  //  String call() throws Exception; 
} 
 
@FunctionalInterface 
public interface RawComparator extends Comparator { 
  //  int compare(Object o1, Object o2); 
} 
 
@FunctionalInterface 
public interface StringProducer<T> extends Function<T, String> { 
  //  public String apply(T t); 
} 
 

Non-Functional Interfaces that Collapse into Functional Interfaces 

In rare cases the parameterization of a non-functional generic interface 
can be a functional interface.  This can happen if a generic interface has 
overloaded methods that collapse into a single abstract method for certain 
parameterizations.  This will only happen infrequently, but here is an 
example of this corner case. 

Examples of parameterization of a non-functional generic interface with 
collapsing methods: 
interface Sink<T, N extends Number> {  // not functional 
   void consume(T arg); 
   void consume(N arg); 
} 
@FunctionalInterface 
interface NumberSink extends Sink<Number, Number> { 
  // void consume(Number arg); 
} 
 

The generic Sink interface has two abstract methods, both named consume, but 
with different argument list.   If both type parameters are replaced with the same 
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concrete type the overloaded methods collapse into a single abstract method.  For 
this reason the subinterface NumberSink is a functional interface; the comment 
denotes the single abstract method that is inherited from the superinterface 
Sink<Number,Number>. 
intersection of functional interfaces 

Intersection of  Functional Interfaces 

An interface can be derived from several superinterfaces.  If the superinterfaces 
are functional interfaces, the resulting intersection type is a functional interface, 
too, if the intersection contains a single abstract method.  This abstract method 
may even be generic. 

These cases will be rare in practice, as it is only an issue if the functional 
superinterfaces have single abstract methods with the same name and matching 
signatures.  Belowe are a couple of examples of these corner cases.   

Example of the intersection two functional interfaces: 
@FunctionalInterface 
interface Printable { 
    void print(String s); 
} 
@FunctionalInterface 
interface Formatter { 
    void print(String s); 
} 
@FunctionalInterface 
interface PrettyPrinter extends Printable, Formatter { 
  //  void print(String s); 
} 
 

Quite obviously the intersection type PrettyPrinter has a single abstract 
method since the two superinterfaces have identical abstract methods.  The 
comment in the subinterface shows the signature of the inherited single abstract 
method. 

Here is a more complex example that involves three functional 
superinterfaces, two of which are generic interfaces.  The three functional 
interfaces are: 
@FunctionalInterface 
interface RawProducer {  
    Object produce();  
} 
@FunctionalInterface 
interface GenericProducer<S> {  
    S produce();  
} 
@FunctionalInterface 
interface Source<T> {  
    T produce();  
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} 
 

Each of the three functional interfaces has a different produce method 
(with different return type).  We consider the two subinterfaces 

Example of the intersection of several functional interfaces: 
@FunctionalInterface 
interface ObjectProducer extends RawProducer,  
                                 GenericProducer<Object>,  
                                 Source<Object> { 
  //  Object produce();  
} 
 

In this example the three superinterfaces single abstract methods collapse into a 
single signature in the subinterface ObjectProducer. The comment in the 
subinterface shows the signature of the inherited single abstract method. 

Example of the intersection of several functional interfaces with a generic 
single abstract method: 
@FunctionalInterface 
interface Producer<S> extends RawProducer,  
                              GenericProducer<S>,  
                              Source<S> { 
  //  S produce(); 
} 
 

In this example it is less obvious why the subinterface Producer<S> is a 
functional interface.  The inherited single abstract methods do not have identical 
signatures, but the method signatures are compatible enough to yield a functional 
interface as the intersection type.  This is because the signature <S extends 
Object> S produce() is equivalient to <T extends Object> T produce() and 
both are a subsignature of Object produce().   

As you can tell form the last example in particular, the rules regarding 
subsignatures are fairly complex.  There are many issues involved: the relationship 
between generic types and raw type as well as issues of substitutable return types 
and compatible throws clauses.  If you are interested in the details, the language 
specification would be the best source for further information.   

For all practical purposes the compiler will figure out whether the intersection of 
functional interfaces is still functional.  In case of doubt, use the 
@FunctionalInterface annotation: qualify the subinterface with the annotation 
and the compiler swill raise a compile-time error message if the subinterface is not 
functional. 
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Target Typing 

Lambda expressions and method/constructor references conceptually 
denote functions, but Java has no such thing as function types.  Instead, 
lambda expressions and method/constructor references must be 
converted to functional interface types.  We discussed the need for functional 
interface types and related details in the section on "Functional 
Interfaces".  Simply put, a functional interface type is an interface with 
one abstract method. 

We also mentioned that the compiler infers the functional interface type, 
to which a lambda expression or method/constructor reference is 
converted, from the context in which it appears.  This context dependent 
type inference process is called target typing.  In the following we will 
discuss how target typing works.  Let us start by clarifying a couple of  
terms. 
target type 

Definition 

In Java, every expression must have a type.  The expression's type is 
determined by the compiler.  The type deduction process performed by 
the compiler depends on the nature of the expression.  Java has two sorts 
of expressions: 

 For so-called standalone expressions the type deduction can be 
performed by just analyzing the expression.  Examples of standalone 
expressions are array.length, i+5, or obj.getClass().  

 For so-called poly expressions the type deduction requires analysis of 
both the expression and the context in which the expression appears.  
Poly expressions in isolation, i.e., without a context, have no type.  An 
example of a poly expression is new HashSet<>().  It can mean 
different things in different context. 

When an expression appears in a context, its type must be compatible with a type 
expected in that context.  The expected type is called the target type.   

The expression itself has a deduced type.  For poly expressions the deduced type can 
be influenced by the target type. The compiler analyses the context, determines 
the target type and deduces a type for the expression that is equals or convertible 
to the target type.  In contrast, a standalone expression's type is always 
independent of the target type; it just has to be convertible to the target type. 
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Lambda expressions and method/constructor references are always poly 
expressions, i.e., their type is deduced by the compiler from the enclosing context 
in which they appear.  Lambda expressions and method/constructor references 
are slightly different from other types of poly expressions: 

their deduced type is not just convertible, but equal to the target type, and 

the target type cannot be an arbitrary type, but must be a functional interface type.  

Before we address the process of  target typing in further detail we take a 
look at Java expressions in general and how the compiler determines the 
type of  an expression.  This is background information that aids the 
understanding of  type inference in general and for lambda expressions 
and method/constructor references in particular.  A basic understanding 
of  type inference may be helpful in situations where the type inference 
process fails.  Failure might occur for various reasons, e.g. due to 
incorrect syntax, due to limitations of  the compiler's type inference logic, 
or because of  an insufficient context.  With a basic understanding of  
type inference you will be capable of  figuring out why type inference fails 
and how to work around it. 

If  you are already familiar with poly expressions and the Java compiler's 
type deduction strategies you might want to skip the subsequent sections 
and continue with the section on "Target Typing for Lambda 
Expression". 

Classification of  Expressions 

For each expression in the source code the compiler must determine the type of 
the expression.  It applies different strategies for different kinds of expressions.  In 
Java there are two types of expressions 

 Standalone expressions. These are expressions whose type can be 
determined entirely from the contents of the expression. 

 Poly expressions. These are expressions that can have different types in 
different contexts.  A poly expression's type is determined by the 
compiler from the context in which the poly expression is defined. 

Determining an expression's type is comparatively easy for constant and 
standalone expressions and much more challenging for poly expressions.  
Let us take a look at examples for the various types of expressions. 
standalone expression 
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Standalone Expressions 

Most expressions are standalone expressions.  Here are a couple of 
examples: 
List<String> list = new ArrayList<String>();              //1 
list.add("Emma");                                         //2 
Object ref = list.get(0);                                 //3 
 

The expression new ArrayList<String>() in  line //1 is a standalone 
expression.  Even in isolation the compiler can tell that the expression new 
ArrayList<String>() has the type ArrayList<String>.  The expression's type 
is always the same, regardless of the context in which it appears.  It does not 
matter whether it appears as the right-hand side of an assignment - like in the 
example above - or as the argument of a method invocation or in a cast 
expression.  The type is always the same. 

The expression "Emma" in line //2 has a constant value and the compiler can 
immediately tell that its type is String. 

The expression list.get(0) in line //3 is a standalone expression, too.  The 
compiler knows that the type of the list variable is List<String>,  that the get 
method's return type is String, and concludes that the type of the entire 
expression is String. This, too, is independent of the context. 
poly expressions 

Poly Expressions 

Java has a category of types called poly expressions. The type of a poly 
expression varies depending on the context in which the expression 
appears.  The type is not specified by the programmer (in terms of Java 
syntax), but instead inferred by the compiler. Lambda expressions and 
method/constructor references are an example of poly expressions, but 
they are not the only poly expressions in Java.   

Here is an overview of all poly expressions in Java along with the context 
in which they are permitted to appear.  Subsequently we will discuss type 
inference for each of the poly expressions.  

 

Poly Expression Example Context 

Instance creation 
expression using a 
"diamond 
operator" 

new List<> assignment or 
method invocation 

Invocation of a 
generic method or 

Collections.emptySet() assignment or 
method invocation 
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constructor 

Conditional 
operator 
expression 

isSequential ? 
new HashSet<>() :
Collections.synchronizedSet
  (new HashSet<>())  

assignment or 
method invocation, 
unless both 
operands produce 
primitives (or 
boxed primitives) 

Method or 
constructor 
references 

String::compareToIgnoreCase assignment, method 
invocation, or cast 

Lambda 
expressions 

(i,j) -> i<j assignment, method 
invocation, or cast 

poly context 

Poly Contexts 

As explained above a poly expression need a context from which the 
compiler can infer the poly expression's type.  We call such a context a 
poly context.  Before we take a closer look at the various poly expressions 
and how their target type is deduced, let us see in which contexts are poly 
contexts and which ones are not. 

 In an assigment context the poly expression appears on the right-hand 
side of the assignment operator '='.  The target type is the type of the 
left-hand side of the assignment. 

Example TargetType variable = poly_expression; 

 In a method invocation context the poly expression appears as an 
argument in a method or constructor call.  The target type is the 
declared type of the corresponding method parameter. 

Example:   ReturnType methodName(TargetType arg); 
  methodName(poly_expression); 

 In a cast context the poly expression is preceeded by a cast operation, 
i.e., a type enclosed in parentheses.  The cast's target type serves as 
the poly expression's target type. 

Example (TargetType) poly_expression 

 A return context, i.e., when a poly expression appears as the expression 
after the return keyword in a method body, is considered an 
assignment context.  The target type is the method's declared return 
type. 

Example:   TargetType methodName() { return poly_expression; } 
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 A receiver context in a method invocation or field access, i.e., when a 
poly expression appears before the member selection symbol '.', is 
not considered a context for a poly expression.  Allowing this context 
would add another dimension to the complexity of the type inference 
algorithm, since the target type cannot be easily derived. 

Examples:   poly_expression.field 
  poly_expression.method() 

 A loop context, i.e., when a poly expression appears as the expression in 
an enhanced for loop, is not considered a context for a poly 
expression.  This is as if the expression were a receiver, namely 
exp.iterator() (or, in the array case, exp[i]).  

Example:   for (Type variable : poly_expression) { … } 

 A string context is not considered a context for a poly expression. It 
does not provide any useful information for type inference, because 
every value can be converted to a String. 

Example:   "prefix." + poly_expression 

 Numeric and boolean contexts (e.g. loop conditions, assert operands, 
binary expression operands) are not considered contexts for a poly 
expression.  The reason is that some poly expressions cannot target a 
primitive type (instance creation expressions, lambda expressions, 
method references) and working out proper type inference for the 
remaining poly expressions would be quite complex without much 
payoff. 

Example:   if (poly_expression) … 
  5L + poly_expression 

In a context that the compiler considers not a type inference context for a 
given poly expression is simply ignored.  The compiler simply does not 
take any information from the context for deduction of missing type 
information.   

Target Typing for Poly Expressions 

In this section we take a look at type inference for the various types of 
poly expressions. 
target typing for diamond operator 

Target Typing for Instance Creation Expressions with the 
"Diamond Operator" 

Instance creation expressions are poly expressions when they use the 
"diamond operator".  Let us take a look at an example.  It shows the 
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identical expression is two different contexts.  In each context the 
expression has a different deduced type. 

Example of an instance creation with "diamond operator": 
Collection<Object> objs = new ArrayList<>();            //1 
List<String>       list = new ArrayList<>();            //2 
 

The expression new ArrayList<>() in line //1 and //2 is a poly expression.  It 
is a new expression (aka instance creation expression) for a generic type that uses a 
diamond "<>" in lieu of type arguments.  In other words, the type parameter for 
the generic type ArrayList has been omitted.  The diamond operator turns the 
expression into a poly expression.  The compiler must figure out the missing type 
parameter before the type of the entire instance creation expression can be 
determined. 

In the example above the exact same new expression appears in two different 
contexts. In each context it has a different inferred type.  In both cases the 
context is an assignment context, i.e., the poly expression appears on the right-
hand side of an assignment.  For type inference the compiler takes a look at the 
left-hand side of the assignment and finds the target type, i.e., the type that is 
required in the given assignment context.  It then checks whether a type 
parameter can be found for the right-hand side that yields a compatible type.  
This way the compiler deduces that the poly expression must be of type 
ArrayList<Object> in line //1 and of type ArrayList<String> in line //2. 

Instance creation expressions with "diamond operator" may appear in an 
assignment context, like in the example above, or in a method invocation context, 
i.e., as the argument of a method.  Other contexts are not considered for type 
inference.  If, for instance, the instance creation expression appears in a casting 
context the compiler simply ignores the context information and performs the 
type inference as though there were no context at all.  Here is an example: 

Example of an instance creation expression with "diamond operator" in a casting 
context: 
List<Long> list = (List<Long>) new ArrayList<>();        // error 
 

The compiler ignores the cast context because casting is not a valid context for 
type inference of an instance creation expression.  It deduces ArrayList<Object> 
as the type of the new expression (as though there were no context at all) and 
then complains about incompatible types because an ArrayList<Object> cannot 
be converted to a ArrayList<Long>. 

The error message can be avoided by not using the diamond operator, but 
providing the correct type parameter. 

The same example, but this time corrected: 
List<Long> list = new ArrayList<Long>();                  // fine 
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The example compiles because the instance creation expression new 

ArrayList<Long>() is no poly expression and for this reason no context 
dependent type inference is needed. 
target typing for generic methods 

Target Typing for Invocation of  Generic Methods 

The invocation of a generic method can be a poly expression. Below is an 
example that uses the identical method invocation in two different 
contexts.  In each context the expression has a different deduced type. 

Example of an invocation of a generic method: 
Collection<Object> objs = new ArrayList<>(); 
List<String> list = new ArrayList<String>(); 
objs      = Arrays.asList("Emma", "Otto", "Lilo");      //1 
list.addAll(Arrays.asList("Emma", "Otto", "Lilo"));     //2 
 

The expression Arrays.asList("Emma", "Otto", "Lilo") in line //1  and 
//2 is a poly expression.   It is the invocation of the generic asList method of 
class Arrays.  Generic methods are usually invoked without specifying the 
method's type parameter(s).  In this case the compiler must infer the missing 
parameter(s). 

In line //2 the poly expression appears in an assignment context, namely 
assignment to a left-hand side of type Collection<Object>. In line //2 it appears 
in an invocation context, i.e., as the argument of the addAll method of class 
List<String>. 

In the assignment context the compiler applies the same strategy as described 
above.  It takes a look at the left-hand side of the assignment and figures out that 
the target type is Collection<Object>.  The right-hand side will produce the 
compatible type List<Object> when the missing type parameter is inferred as 
type Object.  For this reason the deduced type for the method invocation 
expression Arrays.asList("Emma", "Otto", "Lilo") is List<Object>. 

In the method invocation context in line //2 the compiler first determines the 
target type by figuring the declared argument of the invoked addAll method.  It 
finds that the declared argument type of the addAll method in class 
List<String> is Collection<String>.  It means that the result of the asList 
method must be compatible to the target type Collection<String>.  This can be 
achieved if the type parameter of the generic asList method is String.  
Eventually, the type of the entire poly expression Arrays.asList("Emma", 
"Otto", "Lilo")  is deduced as List<String>. 

Again, the compiler deduces different types for the exact same method 
invocation expression depending on the context: the poly expression must be of 
type List<Object> in line //1 and of type List<String> in line //2.  Note that 
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in both examples the target type (Collection<Object> and 
Collection<String>) differs from the deduced type (List<Object> and 
List<String>).  The deduced type is compatible to the respective target type and 
the compiler automatically applies the necessary conversions. 

Invocations of a generic method may appear in an assignment context or in a 
method invocation context, as illustrated in the example.  Other contexts are not 
considered for type inference. 
target typing for conditional operator 

Target Typing for Conditional Operator Expressions 

The ternary conditional operator "?:" can be a poly expression. Below is 
an example that uses the identical conditional expression in two different 
contexts.  In each context the expression has a different deduced type. 

Example of conditional operator expression: 
Set<String> stringSet  
  = isSequential  
  ? new HashSet<>()  
  : Collections.synchronizedSet(new HashSet<>());            // 1 
Set<Number> numberSet 
  = isSequential  
  ? new HashSet<>()  
  : Collections.synchronizedSet(new HashSet<>());            // 2 
 

The conditional operator expression in line //1 and //2 is a poly expression 
because both its operands are poly expressions.  Before Java 8, such an expression 
was illegal; the conditional operator was not considered as a context for type 
inference.   Since Java 8, it is permitted. 

The compiler first determines the type of the left-hand side of the assignment; the 
required target type is Set<String> in line //1 and Set<Number> in line //2.  
Then the compiler pushes this type information onto the two operands of the 
conditional expression.  Thus the required target type for both operands must be 
compatible to Set<String> and Set<Number> respectively.   

For the first operand the compiler figures out that a type argument of String or 
Number respectively would yield the compatible types HashSet<String> and 
HashSet<Number>.   

The second operand is more challenging.  It is the invocation of the generic 
synchronizedSet method of class Collections.  The compiler infers that the 
generic method needs a type parameter of String or Number in order to yield the 
compatible return types Set<String> or Set<Number>.  This determines the 
required argument type of the generic synchronizedSet method and leads to the 
requirement that the instance creation expression for the HashSet must be 
compatible to Set<String> or Set<Number>.  This can be achieved by inferring 
String and Number as the type parameters for the HashSet creation. 
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Eventually, the compiler deduces that the poly expression is of type Set<String> 
in line //1 and of type Set<Number> in line //2. 

Conditional operators may appear in an assignment context, as illustrated in the 
example, or in a method invocation context.  Other contexts are not considered 
for type inference. 
target typing for method/constructor references 

Target Typing for Method and Constructor References 

Method and constructor references are poly expressions. Below is an 
example that uses the identical method reference in several different 
contexts.  In each context the expression has a different deduced type. 

Example of a method reference: 
List<String> list = new ArrayList<String>(); 
Function<String[],String[]> mapper = list::toArray;          // 1 
ThreadLocal<Object[]> names =  
ThreadLocal.withInitial(list::toArray);                      // 2 
Object task = (Supplier<?>)list::toArray;                    // 3 
Object[] tasks = new Object[] 
{(Callable<Object[]>)list::toArray};                         // 4 
 

The method reference list::toArray is a poly expression.  Method and 
constructor references are always poly expressions; their target type must be 
inferred by the compiler from the enclosing context.  Hence it is a compile-time 
error if a method or constructor reference occurs in someplace other than an 
assignment context, an invocation context, or a casting context. 

In line //1 the context is an assignment context.  First, the compiler checks the 
left-hand side and figures out what the required target type is and whether it is a 
functional type.  Method and constructor references as well as lambda expression 
may only appear in a context where the target type is a functional interface type.   
In line //1 the left-hand side type is Function<String[],String[]>, which is a 
functional interface type from package java.util.function.   

Next the compiler figures out the so-called function descriptor of both the left- and 
the right-hand side and checks whether they are compatible.  The function 
descriptor is basically the description of a method without its name and body.  It 
consists of type parameters, formal parameter types, return types, and thrown 
types.  The function descriptor is similar to the function signature.  The difference is 
that the return type is irrelvant for the signature, but part of the descriptor. 

In line //1 the left-hand side descriptor is the descriptor of the apply method of 
interface Function<String[],String[]>.  Its descriptor is (String[])-> 
String[], which means: it is a function that takes one argument of type 
String[] and returns a value of type String[] and has no type parameters (i.e., 
it is not generic) and does not throw any checked exceptions.   
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The right-hand side descriptor is the descriptor of the method reference 
list::toArray.  Since the list variable is of type List<String> the compiler 
finds that there are two candidate methods: 

 a toArray method without arguments that returns an Object[] and 
has the descriptor ()->Object[], and 

 a generic toArray method with a T[] argument that returns a T[] with 
the descriptor <T>(T[])->T[]. 

Only the second method yields a compatible descriptor, namely (String[])-> 
String[] when the type parameter T is replaced by the type String. The 
resulting function descriptor exactly matches the left-hand side's descriptor. The 
functional interface on the left-hand side is then determined as the target type of 
the method reference on the right-hand side of the assignment. 

Eventually, the poly expression list::toArray in line //1 has the deduced type 
Function<String[],String[]>.  

In line //2 the context is a method invocation context because the method 
reference list::toArray is passed as an argument to the withInitial method 
of class ThreadLocal<Object[]>. from package java.lang.  In this context, the 
compiler figures out the declared argument type of the invoked method and 
checks whether it is a functional interface type.  The argument type of the 
withInitial method is Supplier<Object[]>, which is a functional interface 
type from package java.util.function.   Hence the target type is 
Supplier<Object[]>. 

Then the compiler again figures out the function descriptors and checks whether 
they match.  The target type is Supplier<Object[]>; it has a get method that 
takes nothing and returns an Object[].  Its descriptor is ()->Object[].  The 
method reference list::toArray again boils down to the two candidate 
methods already described above.  This time the first candidate has a matching 
function descriptor.  

Eventually, the poly expression list::toArray in line //2 has the deduced type 
Supplier<Object[]>.  

In line //3 the context is a casting context.  Since the assignment of a method 
reference to a variable of type Object is a context in which the compiler cannot 
infer a target type for the method reference from the left-hand type, we use a cast 
to aid type inference.  For this reason the method reference list::toArray is 
preceeded by a cast with target type Supplier<?>.  In this context, the compiler 
checks whether the cast's target type is a functional interface type.  We have 
already seen that Supplier<?> is a parameterization of the generic functional 
interface type Supplier<T> from package java.util.function.  
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Then the compiler again compares the function descriptors.  The cast's target type 
Supplier<?> has the descriptor ()->?, which mean its get method takes nothing 
and returns an arbitrary unknown type.  For the method reference 
list::toArray we again have two candidate methods, as described above.  The 
first candidate has the function descriptor ()->Object[],  which is compatible to 
the required descriptor of ()->?.  

Eventually, the poly expression list::toArray in line //3 has the deduced type 
Supplier<?>.  

In line //4 the poly expression appears as an array initializer. Array initializer 
contexts are like assignments, except that the "left-hand side variable" is an array 
component and its type is derived from the array's type. 

Note that in all examples the required target type and the constructor/method 
reference's deduced type are identical.  This is not by chance; it is intended.   
Different from other poly expressions the type of a constructor/method 
reference is not just convertible to, but infact identical to its target type.  The 
important prerequisite is that the constructor/method reference is compatible 
with its target type; otherwise. Compatibility depends on the function descriptor; 
to derive this descriptor, a type target must be a functional interface type. 
target typing and checked exceptions 

Target Typing & Checked Exceptions 

So far we have only considered target typing for references to methods and 
constructors that do not throw any checked exceptions.  How does target typing 
work if checked exceptions are involved and the referenced methods and 
constructors have throws clauses?  It turns out that the compiler checks throws 
clauses for compatibility and reports errors if they are incompatible.  Let us take a 
look at an example.  

Example of a method reference that throws checked exceptions: 
Function<Future<Number>,Number> f1  
  = Future<Number>::get;                                      //1 
                             // error: incompatible throws clause 
 
ThrowingFunction<Future<Number>,Number,Exception> f2  
  = Future<Number>::get;                                     //2 
 

Let us first see what the involved types and methods look like. 

The method reference in our example is the get method of the Future interface 
defined in package java.util.concurrent.  Here is the relevant excerpt from 
interface Future: 
public interface Future<V> { 
    V get()  
        throws InterruptedException,  
               ExecutionException; 
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    V get(long timeout, TimeUnit unit) 
        throws InterruptedException,  
               ExecutionException,  
               TimeoutException; 
} 
 

The method reference appears in two assignment contexts.  The left-hand side of 
the assignment in line //1 uses the parameterization 
Function<Future<Number>,Number> of the functional interface Function 
defined in package java.util.function.  Here is the relevant excerpt from 
interface Function: 
@FunctionalInterface 
public interface Function<T, R> { 
    R apply(T t); 
} 
 

In line //2 the left-hand side is of a different functional interface type, namely a 
parameterizaton of the type ThrowingFunction, which is a functional interface 
type that looks like this: 
@FunctionalInterface 
public interface ThrowingFunction<A,R,E extends Exception> { 
    R get(A arg)  throws E; 
} 
 

Now, let us see which role the get method's throws clause plays in the target 
typing process. 

In line //1 the target type on the left-hand side has the function descriptor 
(Future<Number>)->Number, which means it is a function that takes a 
Future<Number>, returns a Number as a result, and does not throw any checked 
exceptions.   

The Future interface's get method is overloaded.  The two candidates have the 
descriptors  
(Future<Number>,TimeUnit)->Number throws TimeoutException, 
                                          ExecutionException, 
                                         InterruptedException  

and  
(Future<Number>)->Number throws ExecutionException,  
                                InterruptedException 

The first candidate does not match at all because the number of required 
arguments is different (two arguments vs. one argument). The second candidate 
has an almost compatible descriptor; the argument list and the return type match, 
only the throws clause is different from the left-hand side's descriptor.  The left-
hand side requires that the function must not throw checked exceptions while the 
method reference on the right-hand side does raise checked exceptions.  Due to 
the incompatible throws clause the compiler issues an error message. 
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In line //2 the left-hand side has the descriptor (Future<Number>)->Number 
throws Exception.   Its clause throws Exception is compatible to the method 
reference's clause throws ExecutionException, InterruptedException 
because Exception is a common supertype of both ExecutionException and 
InterruptedException.  

The compiler deduces that the poly expression Future<Number>::get in line //2 
has the target type ThrowingFunction<Future<Number>,Number, Exception>.  

Exception Tunnelling - Wrapping Checked Exceptions into Runtime Exceptions 

Since most functional interface types defined by the JDK and in particular all 
functional interface types in package java.util.function do not permit 
checked exceptions it is common practice to wrap any checked exceptions raised 
by a lambda expression or method/constructor reference into an unchecked 
RuntimeException.6 

Here is an example of such a wrapper.  We define a runtime exception type 
Unchecked and an adapter operation that turns a function with checked 
exceptions into a function that only throws a runtime exception. 

Example of wrapper for checked exceptions: 
@FunctionalInterface 
public interface ThrowingFunction<A,R,E extends Exception> { 
    R get(A arg)  throws E; 
 
    static <A,R,E extends Exception> Function<A,R>  
      makeNonThrowing(ThrowingFunction<A,R,E> f) { 
        return (A arg) ->  { 
           try { return f.get(arg); }  
           catch (Exception e) {throw new RuntimeException (e);} 
        }; 
    } 
 

Using the adapter operation makeNonThrowing() we can turn the exception 
throwing method reference Future<Number>::get into a non-throwing function 
that is compatible to the functional interface type Function from package 
java.util.function: 
Function<Future<Number>,Number> f3  
  = ThrowingFunction.makeNonThrowing(Future<Number>::get);    //3 
 

In line //3 the method reference Future<Number>::get appears in a method 
invocation context.  The invoked method makeNonThrowing is a generic method.  

                                                      

6 Another example of exception tunnelling can be found in the section on "Checked 
Exceptions". 
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The first step is that the compiler performs type inference for the 
makeNonThrowing method and figures out what its type parameters A, R, and E 
must be. The compiler infers the target type Function<Future<Number>, 
Number> from the left-hand side of the assignment and concludes that the 
makeNonThrowing method's type parameters must be A:= Future<Number> and 
R:= Number.  Since there are no particular requirements for the type parameter E, 
i.e. the exception type, the compiler provisionally uses the upper bound and infers 
E:= Exception.  

The second step is type inference for the method reference 
Future<Number>::get.  The target type is the makeNonThrowing method's 
declared argument type.  Given the already inferred type parameters the 
makeNonThrowing method has the declared argument type 
ThrowingFunction<Future<Number>,Number,Exception>  with the descriptor 
(Future<Number>)->Number throws Exception.  We have already seen above 
that this function descriptor is compatible to the function descriptor of 
Future<Number>::get.  

The compiler deduces that the poly expression Future<Number>::get in line //3 
has the deduced type ThrowingFunction<Future<Number>,Number, 

Exception>. 
target typing and return type 

Target Typing & the Return Type 

During target typing the compiler does not only check for compatible throws 
clauses, but also checks for compatibility of the return types and reports errors if 
they are incompatible.  Let us take a look at an example.  

Example of a method reference with a return type: 
ThrowingFunction<Future<Integer>,Number,Exception> f4  
  = Future<Integer>::get;                                     //4 
 

We again use a to the get method of the Future interface defined in package 
java.util.concurrent. 

The target type on the left-hand side of the assignment has the descriptor 
(Future<Integer>)->Number throws Exception.  The method reference on 
the right-hand side has the descriptor (Future<Integer>)->Integer throws 
ExecutionException, InterruptedException.  In addition to the different 
throws clauses also the return type differs: the left-hand side requires a return 
type of Number whereas the method reference has the return type Integer.  Since 
Integer is a sub-type of Number the functions descriptors are compatible. 

The compiler deduces that the poly expression Future<Number>::get in line //4 
has the deduced type ThrowingFunction<Future<Integer>,Number, 

Exception>. 
target typing for lambda expressions 
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Target Typing for Lambda Expressions 

Lambda expressions are always poly expressions, i.e., their type depends on the 
context in which they are declared and the target type is always inferred by the 
compiler.  

In the following we will discuss target typing for lambda expressions in various 
contexts. 

Assignment Context 

Example of a lambda expression in an assignment context: 
BiPredicate<String,String>        sp1  
  = (s,t) -> s.equalsIgnoreCase(t);                          // 1 
BiFunction<String,String,Boolean> sp2 
   = (s,t) -> s.equalsIgnoreCase(t);                         // 2 
 

In line //1 and //2 we see the lambda expression in two different assignment 
contexts.  In analogy to method references, the compiler checks the left-hand side 
and figures out what the required target type is and whether it is a functional 
interface type.   

In line //1 the left-hand side type is BiPredicate<String,String>, which is a 
parameterization of a generic functional interface type from package 
java.util.function.  Next the compiler figures out the function descriptor of 
both the left- and the right-hand side and checks whether they are compatible.  
The right-hand side descriptor is the descriptor of the test method in class 
BiPredicate<String,String>.  Its descriptor is (String,String)->boolean. 

The lambda expression's descriptor is <X,Y>(X,Y)->boolean, which means it 
takes two arguments of yet unknown type and returns a boolean value.  When 
the unknown types are inferred as type X:=String and Y:=String then the 
lambda expression's descriptor matches the left-hand side descriptor.  

Hence, the poly expression (s,t) -> s.equalsIgnoreCase(t) in line //1 has 
the deduced type BiPredicate<String,String>.   

In line //2 the left-hand side type is BiFunction<String,String,Boolean>, 
which is a functional interface type from package java.util.function.  Its 
descriptor is the descriptor of the apply method in class 
BiFunction<String,String,Boolean>, namely (String,String)-> Boolean.   

The lambda expression's descriptor still is <X,Y>(X,Y)->boolean.  When the 
unknown types are inferred as X:=String and Y:=String and the return type is 
boxed to Boolean then the lambda expression's descriptor matches the left-hand 
side descriptor.  

Hence, the poly expression (s,t) -> s.equalsIgnoreCase(t) in line //2 has 
the deduced type BiFunction<String,String,Boolean>.   
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Return Context 

Example of the same lambda expression in return context: 
BiPredicate<String,String> makePredicate() { 
  return (s,t) -> s.equalsIgnoreCase(t);                // 3 
} 
 

In line //3 we see the lambda expression in a return statement.  This is a context 
similar to an assignment context.  The required target type is the makePredicate 
method's declared return type.  The required target type therefore is 
BiPredicate<String,String>.  We have already seen above that the lambda 
expression is convertible to this target type.   

Hence, the poly expression (s,t) -> s.equalsIgnoreCase(t) in line //3 has 
the deduced type BiPredicate<String, String>.   

Method Invocation Context 

Example of the same lambda expression in a method invocation context 
Predicate<String> matches(String arg)  { 
  return bind1st((s,t) -> s.equalsIgnoreCase(t),arg);   // 4 
} 
 

In line //4 we see the lambda expression in a method invocation context.  The 
required target type is the invoked bind1st method's declared argument type.    
The bind1st method looks like this: 
<T> Predicate<T> bind1st(BiPredicate<T,T> predicate, T first) { 
  return  s -> predicate.test(first,s); 
} 
 

Since the bind1st method is a generic method, its type parameter must be 
inferred before its declared argument types are known.   Hence the first step is 
type inference for the generic bind1st method.  It appears in a return context. 
The target type is the matches method return type, which is Predicate<String>.  
From this requirement the compiler deduces that the bind1st method's type 
parameter T must be inferred as T:=String.   

Then the compiler pushes this requirement onto the bind1st method's 
arguments, which then must be of type BiPredicate<String,String> and 
String. 

This way, the compiler figures out that target type for the lambda expression is 
BiPredicate<String,String>.  We have already seen above that the lambda 
expression is convertible to this target type.   

Hence, the poly expression (s,t) -> s.equalsIgnoreCase(t) in line //3 has 
the deduced type BiPredicate<String, String>.   
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Casting Context 

Example of the same lambda expression in context that demands casting: 
BiFunction<String,String,Integer> sp3  
   = ((s,t) -> s.equalsIgnoreCase(t)).andThen(b->b?1:0);     // 5 
                                       // error: illegal context 
 
BiFunction<String,String,Integer> sp4  
   = ((BiFunction<String,String,Boolean>) 
      (s,t) -> s.equalsIgnoreCase(t))                       // 6 
      .andThen(b->b?1:0); 
 

In line //5 we see the lambda expression in an illegal context.  A lambda 
expression is not allowed as the receiver in a method invocation, field access, etc., 
i.e., it must not appear on the left-hand side of the member selection symbol '.'.  
In fact, no poly expression is permitted in this context.  The reason is that it 
would add another dimension to the complexity of the compiler's type inference 
algorithm. 

In such a situation casting comes to the rescue, as demonstrated in line //6.   The 
target type for deduction of the method reference's type is the cast's target type 
BiFunction<String,String,Boolean>.  We have already seen above that the 
lambda expression is compatible to the target type of the cast.  

Hence, the lambda expression in line //6 has the deduced type 
BiFunction<String,String,Boolean>.  
intersection type 

Casting to an Intersection Type 

A special case of a casting context is a situation where the target type of 
the cast is a so-called intersection type.  Intersections types are a new feature 
since Java 8; in earlier versions of Java they were illegal.  Casts to an 
intersection type are necessary when a lambda expression (or 
method/constructor reference) must be assigned to a variable whose type 
is an empty marker interface type, like for instance java.io.Serializable. 

Let us consider an example.  It uses the same lambda expression as before, but 
this time in a casting context with an intersection type. 

Example of a lambda expression in a casting context with an intersection type: 
Serializable f1  
  = (s,t) -> s.equalsIgnoreCase(t);                          // 7 
                   // error:  Serializable is not a function type 
Serializable f2  
  = (BiPredicate<String,String> & Serializable)              // 8 
    (s,t) -> s.equalsIgnoreCase(t);  
 

In line //7 we see the lambda expression in an assignment context where the 
target type is Serializable.  The compiler rightly complains because the empty 
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marker interface Serializable is not a functional interface type.  So, what can 
we do to force the lambda expression to conform to the Serializable interface?  
We could define a SerializableBiPredicate helper interface, which would be a 
subinterface of both the Serializable  and the BiPredicate interface and could 
serve as the target type. Fortunately, this is not necessary.  Since Java 8, we can 
cast to so-called intersection types. 

An intersection type is a list of types like BiPredicate<String,String> & 
Serializable in line //8.  An intersection type can appear as the target type of a 
cast expression.  The resulting target type is a synthetic type that is a subtype of all 
specified types.  In particular, if the list includes an empty marker interface, the 
synthetic intersection type is also a subtype of the marker interface. 
 

Intersection types did already exist before Java 8.  They were internally used by 
the compiler in the processes of wildcard capture and type inference. But before 
Java 8 it was not possible to express an intersection type directly in a Java 
program, as no syntax supported this.  Since Java 8, intersection types can be used 
as target types of casts. 

They are particularly useful as the casting context for a lambda expression or a 
method/constructor reference.  As explained in the example above, it provides a 
simple way of making a lambda expression or a method/constructor reference 
conform to an interface such as Serializable.  If an intersection type is used in a 
casting context for a lambda expression or a method/constructor reference, then 
the intersection must be a functional interface type.  It typically means that one 
type is a functional interface and the others are marker interfaces. 

Eventually, the result of the target typing process is that the lambda expression in 
line //8 has the deduced type BiPredicate <String,String> & 

Serializable.   

Wrap-Up 

In this section we looked at the type inference process that the compiler performs 
for poly expressions in general and lambda expressions and method/constructor 
references in particular.  The selected examples were fairly simple.  In reality the 
process is more complex, especially when several type deduction processes must 
be performed simultaneously for a given expression.  Mind, the compiler applies 
several type deductions: 

 overload resolution (i.e. selecting a matching method from a set of 
candidate methods with the same name and different signatures) ,  

 type argument inference (i.e. figuring out which type parameters must be 
used for parameterization of a generic type or method if the type 
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parameters are omitted in a generic method invocation or instance 
creation), and  

 target typing (i.e. deducing a lambda expression's or 
method/constructor reference's matching functional interface type). 

The likelihood for type inference failures increases the more deductions 
must be performed for a given expression.  In the next section we want to 
explore some of these problematic situations where type inference fails.  

Type Inference Issues  

Occasionally, type inference fails and the compiler may abort the type 
deduction process with an error messages.  In these situations you need to 
understand the issue and must find a workaround. 

Coping with type inference issues has two aspects: usage and design of an 
API. 

 Usage. As the user of an API that is prone to type inference failures 
you need to figure out a workaround.  Often the problem can be 
solved by adding casts in the right places or replacing implicit with 
explicit lambdas (an implicit lambda being a lambda expression 
without specification of the arguments types). 

 Design. As the designer of an API you might want to set up the API in 
an manner that avoids type inference failures in the first place.  This 
can be achieved  by avoiding overloading and/or avoiding wildcards 
or generics in general.    

In this section we want take a look at a couple of situations where type 
inference fails.  We start with issues that occur frequently in practice and 
proceed to more esoteric situations that are rare in practice.   

Common Type Inference Issues 

In the section on "Poly Expressions" we learnt that in isolation, i.e. 
without a context, poly expressions such as lambda expressions and 
method/constructor references do not have a type.  For instance, the 
lambda expressions s -> s.length() is meaningless unless it appears in a 
context from which the compiler can deduce the type of s. 

In the section on "Poly Contexts" we have seen that there are several 
contexts permitted as type inference context for a lambda expression or 
method/constructor reference: assignment, method invocation, and cast. 
The type inference process is comparatively easy in an assignment or cast 
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context, but can be fairly complex in a method invocation context, 
especially when the invoked method is overloaded. 

In the following we will first look into harmless poly contexts and then 
into the problematic ones.  The harmless situation are of interest because 
the  problematic ones can be resolved by turning them into harmless 
ones. 

Harmless Poly Contexts 

Let us study an example.  Consider the functional interfaces Function, 
ToIntFunction, ToLongFunction, and ToDoubleFunction from package 
java.util.function:  
interface         Function<T,R> { R      apply        (T arg); } 
interface    ToIntFunction<T>   { int    applyAsInt(   T arg); } 
interface   ToLongFunction<T>   { long   applyAsLong  (T arg); } 
interface ToDoubleFunction<T>   { double applyAsDouble(T arg); } 
 

The lambda expressions s -> s.length() can be compatible to either of 
them.  Let us say, the length method in the lambda expression denotes 
the length method declared in the CharSequence interface and defined in 
any of its subtypes (String, StringBuiler, StringBuffer, etc.).  The 
length method returns an int value. 

The deduced type of the lambda expression can be any of the functional 
interfaces above, provided that the type parameter T is replaced with 
CharSequence or a subtype thereof and the type parameter R with a type 
that can store an int. Examples of compatible functional types include: 
ToIntFunction<String>, ToLongFunction<CharSequence>, Function 

<StringBuilder,Integer>, Function<String,Object>, and many more.  
When the lambda expression appears in a poly context then the compiler 
must infer one of these compatible types. 

In an assignment or cast context the type inference is fairly easy because 
the target type is clearly defined.  Here are some examples. 

Examples of assignment context: 
Function<String,Object>      f1 = s -> s.length();           //1 
ToLongFunction<CharSequence> f2 = s -> s.length();           //2 
 

Examples of cast context: 
Object o = (ToIntFunction<StringBuilder>)  s -> s.length();  //3 
       o = (Function<CharSequence,Number>) s -> s.length();  //4 
 

In the assignment context the target type is the type on the left-hand side 
of the assignment. In the cast context the target type for type inference is 
the target type of the cast.  In all cases the target type is clearly defined.  
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In //1 the compiler deduces String as the type of s and subsequently 
checks whether the return type of the lambda expression (namely int) is 
compatible to the return type in the target type's signature (namely 
Object).  With autoboxing int is convertible to Object and the type 
inference succeeds. 

In a similar fashion, the compiler deduces String, StringBuilder or 
CharSequence as the type of s and subsequently checks for the return type 
compatibility, i.e. whether int is compatible to long, int, or Number 
respectively. 

Type inference is equally easy if the inference context is a method 
invocation where the method in question is not overloaded.   

Example of simple method invocation context: 
interface I { double transform(ToDoubleFunction<String> f); } 
 
I iRef = … some implementation of iterface I … 
iRef.transform(s -> s.length);                                //5 
 

The target type for type inference is the method's declared argument type 
ToDoubleFunction<String>.  The compiler deduces String as the type of s 
and finds that the return types int and double are compatible. 
target typing & overloading 

Problematic Poly Contexts 

The type inference process is more complicated when the invoked 
method in an invocation context is an overloaded method.  Below is an 
example where the lambda expression is passed to an overloaded method.  

Example of a method invocation context with overloading: 
interface I<T> { 
  <R> R  map(Function<T,R> f); 
  int    map(ToIntFunction<T> f); 
  long   map(ToLongFunction<T> f); 
  double map(ToDoubleFunction<T> f); 
} 
 
I iRef = … some implementation of iterface I … 
iRef.map(s -> s.length());  // error: ambiguous               //6 
 

The compiler considers all four map methods as candidates for overload 
resolution, which means that there are four different target types for the 
lambda expression.  In such a situation the type inference process fails 
and the compiler reports an ambituity.  In fact, the compiler already 
complains about an ambiguity if there is more than one viable target type; it 
does not even take four candidates; two overloaded methods suffice for 
an ambiguity. 
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A Note on Language Design Decisions (Related to Type Inference) 

You might wonder why the compiler isn't smart enough to avoid type 
inference failure.  The answer is: the compiler is smart enough; it was a 
deliberate design decision to keep type inference simple - at the expense 
of more frequent type inference failure. 

More complex overload resolution schemes are conceivable that would 
avoid type inference failure in situations like the one above.  They were 
discussed and even tentatively implemented during the design of 
lambdas.  In principle, the compiler can apply all kinds of magic in order 
to come up with a most specific target among several viable candidates.  
It could for instance take the return type into account, or the throws 
clauses for that matter, or perform speculative strategies with 
corresponding backtracking.  All this can be done by a compiler, but it 
was decided that the compiler should not do it.  All experiments with 
more sophisticated type inference and overload resolution schemes were 
eventually discarded.   

The language designers decided in favour of a relatively simple type 
inference process (at the expense of more frequent type inference failure) 
for two reasons: a) in order to keep type inference understandable for its 
users and b) for more robust code.   

Ad a) The more complex the type inference process is the more difficult 
it is for its users to track it down.  Even a more sophisticated type 
inference scheme will occasionally fail.  Failure will be rare, but it can still 
happen. In case of type inference failure under a more complex scheme, 
the programmer hardly has a chance to figure out a solution due to the 
overall complexity.  The designers wanted to avoid inexplicable magic 
and decided to keep type inference comprehensible. 

Ad b) Very sophisticated type inference schemes can produce britle code, 
where a seemingly harmless modification of one piece of code can 
change the result of type inference in another piece of code.   It means 
that a small change here can trigger invocation of another method there 
(in a seemingly unrelated piece of code).  Such unexpected side effects 
are usually undesired and difficult to track down in presence of a 
complex type inference scheme.  The designers tried to eliminate 
surprising side effects.  

Coping With Type Inference Failure 

Situations of type inference failure have two aspects:  either you are the 
user of a method that leads to the failure, or you are the designer of such a 
method.  Correspondingly, there are two strategies for tackling the 
problem: 
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 User site workaround:  Avoid type inference, e.g. use explicit lambdas or 
method references. 

 Declaration site workaround: Avoid overloading on functional interface 
types, i.e. rename the overloaded methods. 

Let us explore the workarounds using the example of an overloaded map 
method and the lambda expression s->s.length().  
use explicit lambdas 

User Site Workarounds 

The user of a potentially problematic API can avoid the type inference 
failure by supplying more type information to the compiler.  The user site 
workaround for the example that we have been exploring earlier can look 
like this: 
interface I<T> { 
  <R> R  map(Function<T,R> f); 
  int    map(ToIntFunction<T> f); 
  long   map(ToLongFunction<T> f); 
  double map(ToDoubleFunction<T> f); 
} 
 
I iRef = … some implementation of iterface I … 
iRef.map((String s) -> s.length);                   // fine   //1 
iRef.map(String::length);                           // fine   //2 
 
iRef.map((Function<String,Integer>)s -> s.length());// fine   //3 
iRef.map((ToIntFunction<String>)s -> s.length());   // fine   //4 
 
ToLongFunction<String> mapper = s -> s.length();    // fine   //5 
iRef.map(mapper); 
 

The idea is to reduce the need for type inference in the first place.  Instead 
of having the compiler infer the lambda's signature, we can support the 
compiler by supplying type information explicitly.  The resolutions above 
all assume that the lambda expression s -> s.length() is supposed to 
work on strings and uses the length method of class String. 

The first workaround uses an explicit lambda expression (see //1) instead 
of an implicit one.  An explicit lambda expression has its argument types 
explicitly specified so that the compiler need not infer them.   

The solution in //2 does essentially the same: it uses the method reference 
String::length, which has the signature (String)->int. Again, the 
compiler need not infer the argument type because the method reference 
already supplies it.   

The approaches in //3 and //4 are the least attractive ones: they turn the 
method invocation context into a cast context by casting the entire 



Target Typing 99 

 

lambda expression to an appropriate target type like 
Function<String,Integer>, ToIntFunction<String>, or any other 
compatible functional interface type. 

The solution in //5 introduces a variable to which the lambda expression 
is assigned.  Thereby it turns the method invocation context into an 
assignment context. 

The first two solutions have in common that they describe the lambda 
more precisely by supplying the lambda's argument type (explicitly in the 
lambda expression and implicitly in the method reference). 

The last three solutions have in common that they turn the problematic 
poly context (invocation of an overloaded method) into a harmless poly 
context (cast or assignment). 

Application of the User Site Workarounds in Practice 

Let us explore an example where the user site strategy described above is 
needed.  The Comparator interface from package java.util has five 
overloaded versions of a comparing method. When calling the overloaded 
method it is often best to use explicit lambdas (rather than implict ones) 
in order to avoid the ambiguity error messages. 

Here is an example using the comparing method: 
List<String> strs = Arrays.asList("i","xzy","X","FF80A0"); 
strs.sort(Comparator.comparing(s->s.length()));          // error 
strs.sort(Comparator.comparing((String s)->s.length())); // fine 
strs.sort(Comparator.comparing(String::length));         // fine 
strs.sort(Comparator.comparing( 
         (ToIntFunction<String>)s->s.length()));         // fine 
System.out.println(strs); 
 

With an implicit lambda expression the invocations of the comparing 
methods fails due to an ambiguity error message.  With an explicit lambda 
expression or a method reference the type inference succeeds. 

Step-by-Step Elimination of Compilation Errors 

However, in practice, matters can get rather tedious at times.  In the 
following we want to demonstrate a strategy for finding workarounds 
even in more complex situations than the one above.  We will walk you 
step-by-step through the process of eliminating a compilation error.  
Along the way we will explain why the compiler complains and will try out 
various approaches for getting rid of the compiler messages. 

Here is our case study (note that it does not yet compile): 
List<String> strs = asList("ivn.txt", "Spam.pdf", … ); 
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strs.sort(Comparator 
  .comparing(s->{ int dot=s.lastIndexOf('.'); 
                  return (dot>=0)?s.substring(dot):"";  
                }) 
  .thenComparing(s -> s.length()) 
  .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
); 
 

Before we address the compilation error let us see what the code snippet 
does.  A list of strings is shall be sorted with a composed comparator that 
sorts the strings first by their suffix, then by their length, and eventually 
according to their string content ignoring upper/lower case differences. 

For composing the comparator two methods from the Comparator 
interface are used: the comparing method which has five overloaded 
versions and the thenComparing method which has six overloaded 
versions. 

When we compile the code snippet then the compiler complains. 
strs.sort(Comparator 
  .comparing(s->{ int dot=s.lastIndexOf('.');           // error 
                  return (dot>=0)?s.substring(dot):"";  
                }) 
  .thenComparing(s -> s.length()) 
  .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
); 
 

The compiler reports an ambiguity error for method comparing.  Among 
the five overloaded versions of the comparing method the compiler finds 
four that are applicable, namely comparing(ToDoubleFunction), 
comparing(ToLongFunction), comparing(ToIntFunction), and comparing 
(Function).  The fifth one is comparing(Function,Comparator); it is ruled 
out because it takes two arguments and we clearly provided only one 
argument.  Note that the compiler does not take the return type into 
account for overload resolution purposes in order to rule out the 
ToDouble, ToLong, and ToInt versions.  So far the compiler does not 
even know that the lambda takes a String; how can it possibly know that 
it returns String?  Anyway, there is more than one applicable candidate 
method and the compilation fails with an ambiguity message. 

Let us fix it by passing an explicit lambda expression to the comparing 
method: 
strs.sort(Comparator 
  .comparing((String s)->{ int dot=s.lastIndexOf('.');   // error 
                           return (dot>=0)?s.substring(dot):"";  
                         }) 
  .thenComparing(s -> s.length()) 
  .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
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); 
 

It still does not compile.  This time the compiler knows that the lambda 
takes a String and returns a String and picks comparing(Function) as the 
only applicable candidate among the five overloaded versions.  This 
overloaded version is a static generic method with two type variables.  
Here is its declaration: 
static <T,U extends Comparable<? super U>> 
Comparator<T> 
comparing(Function<? super T, ? extends U> keyExtractor) 
 

For generic methods the compiler must infer the type parameters, i.e. 
what T and U are supposed to be.  It does so in two steps: by first taking a 
look at the argument provided to the generic method and then taking the 
context into account in which the generic method appears.  The argument 
provided to the generic comparing method is the keyExtractor, i.e. our 
lambda expression, whose type the compiler does not yet fully know.  The 
context in which the generic comparing method appears does not help 
either.  The generic method appears as the receiver of the subsequent call 
of method thenComparing, i.e. it appears on the left-hand side of the 
method selection symbol '.'.  This is not a valid type inference context 
and does not provide any information.  Ultimately, the compiler fails to 
infer the two type parameters of the generic comparing method. 

So, our next attempt could be to provide the missing type parameters (in 
which case we need not specify the lambdas argument type any more): 
strs.sort(Comparator 
  .<String,String>comparing(                              // fine 
                      s->{ int dot=s.lastIndexOf('.');    
                           return (dot>=0)?s.substring(dot):"";  
                         }) 
  .thenComparing(s -> s.length())                        // error 
  .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
); 
 

An alternative is a cast that eliminates the need for type inference: 
strs.sort(Comparator 
  .comparing((Function<String,String>)                    // fine 
                      s->{ int dot=s.lastIndexOf('.');    
                           return (dot>=0)?s.substring(dot):"";  
                         }) 
  .thenComparing(s -> s.length())                        // error 
  .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
); 
 

Now the invocation of the comparing method compiles. 
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After solving the first problem, the compiler complains that the 
invocation of thenComparing is ambiguous.  Among the six overloaded 
version the compiler considers four applicable, namely 
thenComparing(ToDoubleFunction), thenComparing(ToLongFunction), 
thenComparing(ToIntFunction), and thenComparing(Function).  The fifth 
overloaded version is thenComparing(Function,Comparator), which takes 
two arguments.  Since we provided only one argument the fifth version is 
inapplicable.  The sixth version is thenComparing(Comparator). A 
Comparator takes two arguments, but we provided a lambda that takes 
only one argument.  This rules out the sixth version of thenComparing.  

In the end, there is more than one applicable candidate method and the 
compilation fails with an ambiguity message. 

Let us fix it by passing an explicit lambda expression to the thenComparing 
method: 
strs.sort(Comparator 
  .comparing((Function<String,String>)  
                      s->{ int dot=s.lastIndexOf('.');    
                           return (dot>=0)?s.substring(dot):"";  
                         }) 
  .thenComparing((String s) -> s.length())               // fine 
  .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
); 
 

With this additional information the compiler picks thenComparing 

(ToIntFunction<String>) as the best candidate.  It is a non-generic 
method, no furhter type inference is needed, and the problem is solved.  

The last invocation of thenComparing does not create an ambiguity 
because we supply a lambda with two arguments.  The compiler picks 
thenComparing(Comparator<String>) because it is the only candidate that 
takes a function with two arguments. 

Common Practice: Break Chains Down Into Single Steps 

The strategy that we have been employing above for eliminating the 
compilation errors requires some insight into the compiler's type inference 
strategies.  A more practical approach might be breaking a chain of 
method calls down into single steps by introducing extra variables for the 
arguments of each step.  Basically, this strategy systematically eliminates 
the need for type inference almost entirely by reducing it to relatively 
simple assignment contexts.  It works like this. 

We would take the initial approach (that does not compile): 
strs.sort(Comparator 
  .comparing(s->{ int dot=s.lastIndexOf('.');           // error 
                  return (dot>=0)?s.substring(dot):"";  
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                }) 
  .thenComparing(s -> s.length()) 
  .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
); 
 

and would break it down into this: 
Function<String,String> extractor1  
  = s-> { int dot=s.lastIndexOf('.');  
          return (dot>=0)?s.substring(dot):"";  
        }; 
ToIntFunction<String>   extractor2  
  = s -> s.length(); 
Comparator<String>      comparator  
  = (s1,s2) -> s1.compareToIgnoreCase(s2); 
 
strs.sort(Comparator 
         .comparing    (extractor1) 
         .thenComparing(extractor2) 
         .thenComparing(comparator) 
); 
 

Often, breaking down a chain of operations like this is only an 
intermediate step for elimination of error messages.  You might want to 
use the insights gained by breaking the chain down for subsequent 
insertion of casts.  So, the ultimate result could look like this: 
strs.sort(Comparator 
         .comparing((Function<String,String>) 
              s->{ int dot=s.lastIndexOf('.');  
                   return (dot>=0)?s.substring(dot):"";  
                 }) 
         .thenComparing((ToIntFunction<String>) s -> s.length()) 
         .thenComparing((Comparator<String>) 
              (s1, s2) -> s1.compareToIgnoreCase(s2)) 
         ); 
 

Of course, we can omit all casts that the compiler does not need and 
would end up with a less cluttered code like this: 
strs.sort(Comparator 
         .comparing((Function<String,String>) 
              s->{ int dot=s.lastIndexOf('.');  
                   return (dot>=0)?s.substring(dot):"";  
                 }) 
         .thenComparing((ToIntFunction<String>) s -> s.length()) 
         .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
         ); 
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An Alternative: Using Method References Instead of Lambdas 

A different approach that we have not yet considered is use of method 
references instead of lambda expressions.  Let us see what happens if we 
use method references.   

First, we define a helper method that replaces the lambda expression we 
used to extract the suffix from each string. 
class Utils { 
  public static String getSuffix(String s) { 
        int dot = s.lastIndexOf('.'); 
        return suffix = (dot>=0)?s.substring(dot):""; 
  } 
} 
 

We use this helper method to replace all lambdas by method references. 
Then our example looks like this: 
strs.sort(Comparator 
         .comparing(Utils::getSuffix) 
         .thenComparing(String::length) 
         .thenComparing(String::compareToIgnoreCase)     // error 
         ); 
 

It almost compiles.  The method references provide more information 
than the implicit lambdas, which eliminates some of the ambiguities.  
Only the reference to String::compareToIgnoreCase is considered 
ambiguous.  The problem can be solved by a cast: 
strs.sort(Comparator 
  .comparing(Utils::getSuffix) 
  .thenComparing(String::length) 
  .thenComparing((Comparator<String>)String::compareToIgnoreCase) 
); 
 

Ultimately, the most readable and concise notation is probably a 
combination of the various approaches, for instance this one: 
class Utils { 
  public static String getSuffix(String s) { 
        int dot = s.lastIndexOf('.'); 
        return suffix = (dot>=0)?s.substring(dot):""; 
  } 
} 
strs.sort(Comparator 
         .comparing(Utils::getSuffix) 
         .thenComparing(String::length) 
         .thenComparing((s1, s2) -> s1.compareToIgnoreCase(s2)) 
         ); 
 

It is not cluttered by any cast and probably the most readable solution of 
all. 
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Wrap-Up on User Site Workarounds for Type Inference Issues 

If you run into type inference problems the resolution strategy is: provide 
more type information.  This can mean: 

 use explicit lambdas instead of implicit ones, i.e. explicitly specify the 
lambda's argument types; 

 try out method references instead of lambda expressions; sometimes 
it helps, sometimes it doesn't;  

 add casts that specify the lambda's or method reference's intended 
type; 

 break down a chain of operations into single steps by introducing a 
separate variable for each lambda expression / method reference. 

avoid overloading on functional types 

Declaration Site Workaround & API Design Considerations 

In the previous section we discussed what a user of an API can do if he or 
she faces compilations errors due to type inference failure.  Avoiding type 
inference errors is also a design issue that API designers must take into 
account. 

Type inference failure due to ambiguity of an overloaded method can be 
avoided during API design already by refraining from overloading.  

In order to illustrate the corresponding design option we re-visit the 
example which we earlier used to illustrate the type inference failures 
caused by overloaded methods. 

Here is the example of an interface with overloaded map methods that 
causes type inference problems: 
interface I<T> { 
  <R> R  map(Function<T,R> f); 
  int    map(ToIntFunction<T> f); 
  long   map(ToLongFunction<T> f); 
  double map(ToDoubleFunction<T> f); 
} 
 
I iRef = … some implementation of iterface I … 
iRef.map(s -> s.length());                    // error: ambiguous 
 

The declaration site workaround for eliminating the compiler error 
message could look like this: 
interface I<T> { 
  <R> R  map(Function<T,R> f); 
  int    mapToInt(ToIntFunction<T> f); 
  long   mapToLong(ToLongFunction<T> f); 
  double mapToDouble(ToDoubleFunction<T> f); 
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} 
 
I iRef = … some implementation of iterface I … 
iRef.map(s -> s.length);                                  // fine 
 

We simply rename the map methods and give each version a different 
name.  With the map methods renamed there is no overloading any longer 
and the potential for ambiguities vanishes.   

Is overloading evil? 

This design approach bears the question whether overloading should be 
generally avoided. After all, there is hardly ever a compelling need to use 
the same method name repeatedly in the same API, except for 
constructors perhaps.  Can't and shouldn't we always use a different name 
for each method? 

The answer is: no, not every set of overloaded methods causes trouble. 
The following properties render a set of overloaded methods problematic 
in conjunction with type inference: 

 the argument types are functional interface types, and 

 the overloaded methods have the same number of arguments. 

Or, conversely, a set of overloaded methods is substantially less likely to 
cause type inference failures if all methods have a different number of 
arguments and the argument types are not functional interface types. 

The need for type inference is particularly pronounced for lambda 
expressions and method references.  These can only be supplied as 
arguments to a method if the argument types are functional interface 
types.  Overloaded methods that do not take lambdas (or method 
references) as arguments are mostly unproblematic. 

Overload resolution is more likely to fail if several of the overloaded 
versions have the same number of arguments.  If the number of 
arguments differs among the overloaded versions the compiler can easily 
rule out inapplicable candidates: every method that has the wrong number 
of arguments is eliminated from the candidate set.  This way it is much 
easier to reduce the candidate set to a single, unambiguous method. 

Application of the User Site Workarounds in Practice 

The design approach suggested above (distinguishing methods by name 
rather than signature) can be found in JDK APIs. It is the approach that 
was for instance taken for the Stream interface in package 
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java.util.stream.  The Stream interface has several map methods with 
different names (map, mapToInt, mapToLong, mapToDouble).   

The downside of an API that does not use overloading is that the user 
must be aware of the fact that there are several methods with different 
names.  In the case of the stream's map methods the user must know that 
it is inefficient to use the map method instead of the more specific 
mapToInt, mapToLong, and mapToDouble methods.  The mapToPrimitive 
methods avoid autoboxing, while the plain map method does box and 
unbox primitive type values. 

Here is an example using the map methods from interface Stream: 
List<String> strs = Arrays.asList("i", "xzy", "X", "FF80A0"); 
int r; 
r=strs.stream().mapToInt(String::length).sum();               //1 
r=strs.stream().mapToLong(String::length).sum();  // error    //2 
r=strs.stream().map(String::length).sum();        // error    //3 
r=strs.stream().map(String::length).reduce(0,(i1,i2)->i1+i2); //4 
 

The method reference String::length can be passed to all four map 
methods.  As String::length returns an int value, the mapToInt 
operation is the most efficient one.  It returns a primitive stream of type 
IntStream.  The mapToLong method does basically the same; it converts 
the int return values of String::length to long values and returns a 
LongStream.  The map operation also works.  It boxes the int return values 
of String::length into Integers and creates a stream of boxed values of 
type Stream<Integer>.  

The different behaviour of the various map methods becomes visible when 
the next operation in the chain is applied.  The subsequent sum operation 
works on an IntStream in //1; it calculates the sum as an int value.  The 
sum operation in //2 works on a LongStream; the sum therefore is a long 
value, which cannot be assigned to the int variable r, which causes a 
compile time error.  In //3 the sum operation is called on a 
Stream<Integer>; the regular, non-primitve streams do not have a sum 
operation, which causes a compile time error.  In //4 we calculate the sum 
via the reduce operation, which is available for all stream types; it 
calculates the sum from the boxed Integers and performs a lot of boxing 
and unboxing along the way. 

API Design Considerations 

The example illustrates the downside of an API that refrains from using 
overloaded methods: the user must decide which method to invoke and 
might inadvertantly pick the least efficient one (like map instead of 
mapToInt in the example). 
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On the other hand, the downside of an API that uses overloading is 
occasional type inference failure due to ambiguities as discussed in the 
previous section on "Problematic Poly Contexts". 

One question remains:  when should an API use overloading and when is 
it better to refrain from overloading?  To answer the question let us look 
at the JDK.   

We have seen examples for both design choices in the JDK.  The Stream 
interface does not overload, but has four map methods with four different 
names.  The Comparator interface does the opposite; it has five overloaded 
comparing methods and six overloaded thenComparing methods.   

The difference is that the map methods in interface Stream return different 
types of streams, whereas the comparing methods in interface Comparator 
all return a comparator of the same type.  In this sense the comparing 
methods have more similarities with each other than the map methods 
have.  

In addition, the various stream types returned from the four map methods 
really make a difference: they have different APIs.  For instance, the 
primitive streams returned from the mapToPrimitive methods have a sum 
operation, which does not exist in the regular Stream<T> returned from 
the plain map method.  For this reason it is sensible that the programmer 
must make a deliberate decision regarding the map method rather than 
leaving the decision to the compiler's overload resolution strategies. 

In contrast, a deliberate decision regarding the comparing method is not 
strictly necessary.  All comparing methods return the same type of 
Comparator and it does not make much of a difference which one is called.  
Under these circumstances (plus considering the even higher number of 
related methods) is deems sensible to use overloading instead of different 
names. 

Wrap-Up on Declaration Site Workarounds for Type Inference Issues 

To avoid type inference failure is to some extent an API design issues.  
An API that does not overload methods whose argument types are 
functional interface types reduces the probability that its users will be 
confronted with type inference failures.  In other words, overloading 
should be used carefully for method with functional argument types. 

Infrequent Type Inference Issues 

The following sections cover type inference issues that occur rarely in 
practice.  Feel free to skip these sections until you come across any of 
these infrequent situations.  
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References to Overloaded Methods/Constructors 

Method and constructor references refer to a name, not to a particular 
signature (see e.g. the section on "Reference to Constructor").  If the 
referenced method or constructor is overloaded the compiler must pick 
from the set of overloaded methods/constructors the one that matches 
the requirements of the poly context in which the method/constructor 
reference appears.  Naturally, the compiler can come to the conclusion 
that there are several matching versions for a given context and may reject 
the method/constructor reference as ambiguous.  It is not a common 
situation, but it may happen.   

Here is an example of a class with two overloaded constructors: 
class C { 
  public C(CharSequence arg) { … } 
  public C(Serializable arg) { … } 
} 
 

When we create a reference C::new to the overloaded constructor and the 
constructor references appears in a context where both overloaded 
versions would match, the compiler complains.  Below is an example of a 
context that leads to a compile-time error. 

Example of an overloaded constructor reference in an assignment 
context: 
Function<? super String,C> f; 
f = C::new;                                              // error 
f = (Function<CharSequence,C>)C::new;                    // fine 
f = (Function<Serializable,C>)C::new;                    // fine 
 

The compiler finds the constructor reference in an assignment context.  
The target type is a wildcard parameterization of the functional interface 
Function from package java.util.function.  The two constructors have 
the signatures (CharSequence)->C and (Serializable)->C.  They are 
compatible with the parameterizations Function<CharSequencer,C> and 
Function<Serializable,C>, which is illustrated by the second and third 
assignment that involve corresponding casts.   

Despite of this compatibility, the first assignment fails.  This is because 
there is no type information regarding the signature of the constructor 
reference C::new and the compiler must deduce all missing information 
from the left-hand side target type.  For this purpose the compiler first 
replaces the wildcard ? super String used on the left-hand side target 
type by its lower bound String. The resulting target type is 
Function<String,C>.  With this target type information the compiler goes 
looking for a constructor in class C with one argument of type String.  
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Both overloaded constructors have a matching signature and the compiler 
considers C::new an ambiguous constructor reference. 

Overloaded methods can create similar problems when used in lambda 
expressions.  Here is the same example, this time using lambda 
expressions instead of constructor references: 
Function<? super String,C> f; 
f = x -> new C(x);                                       // error 
f = (CharSequence x) -> new C(x);                        // fine 
f = (Serializable x) -> new C(x);                        // fine 
 

The compiler again considers Function<String> the target type and 
complains that both constructor of class C accept String as the argument 
type and are therefore ambiguous. 

Wildcard Target Types Are the Norm 

Part of the problem described above is due to the unspecific target type.  
In the example the target type is a wildcard parameterization of a generic 
type.  Such a wildcard type stands for an entire family of types, not just 
one specific type.   This increases the chance that several candidates from 
a set of overloaded methods meet the requirements. 

When the target type is more specific, an ambiguity is less likely or does 
not occur at all. For instance, the ambiguity vanishes if we assign the 
overloaded constructor reference to a concrete parameterization instead 
of a wildcard parameterization: 
Function<Function<CharSequence,C> f1 = C::new;            // fine 
Function<Serializable,C>) f2 = C::new;                    // fine 
 

Here the compiler can draw enough information from the target type in 
order to rule out one of the two overloaded version as inapplicable for 
this specific context.  In essence, the more relaxed and unspecific the 
target type is the more likely is an ambiguity error. 

Unfortunately, wildcard parameterizations are fairly common in practice 
as target types.  For instance, almost all stream operations (and many 
other JDK APIs) have wildcard argument types.  As a result, the 
unspecific wildcard target type is more of the norm rather than the 
exception.  Below is an example of an invocation context that leads to the 
same ambiguity that we previously encountered in an assignment context. 

Example of ambiguous constructor reference in an invocation context: 
Arrays.asList("abc","xyz") 
      .stream() 
      .map(C::new)                                       // error 
      .forEach(System.out::println); 
 



Target Typing 111 

 

The reference C::new to the overloaded constructor from our previous 
examples appears in a method invocation context, namely as the argument 
to the stream's map operation.  The map operation's declared argument type 
is the wildcard type Function<? super T,? extends R>.  In the given 
context it boils down to the required target type Function<? super 

String, ? extends Object>.  This unspecific target type leads to the same 
ambiguity error message that we discussed above in the assignment 
context.  Resolutions include casting the method reference or using a 
different type of stream. 

Solving the problem with a cast: 
Arrays.asList("abc","xyz") 
      .stream() 
      .map((Function<CharSequence,C>)C::new) 
      .forEach(System.out::println); 
 

We can add the same cast that we've been using in the assignment context 
and cast the constructor reference to Function<CharSequence,C>, which is 
no longer a wildcard type, but a concrete parameterization of the generic 
target type.  

Alternatively, we can use a different stream type which alters the 
invocation context so that the map method has a different required 
argument type.  

Solving the problem with an explicit type argument: 
Arrays.<CharSequence>asList("abc","xyz") 
      .stream() 
      .map(C::new) 
      .forEach(System.out::println); 
 

We specify an explicit type argument for the generic asList method.  This 
has the effect that the asList method returns a List<CharSequence> 
instead of a List<String>, which it returns without the explicit type 
argument.  The stream is then a Stream<CharSequence> and its map 
operation has the declared argument type Function<? super 

CharSequence,? extends Object>. With this type information the 
compiler looks for a constructor that take CharSequence or a supertype 
therof as an argument, which prunes the candidate set to a single, 
unambiguous candidate. 
target typing & wildcards target typing & generic target types 

More on Wildcard Target Types 

Diesen Teil vielleicht benutzen, um die Type Inference für Wildcard 
Target Types zu erklären (Target Type is the Parameterization with the 
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Bound)  - vielleicht kürzer und im regulären Abschnitt über Target 
Typing.  Und ein realistischeres Beispiel nehmen: 

  

Functional interfaces can be generic and they may be implemented by 
matching lambda expressions or method/constructor references.  It 
means that target types may be (concrete or wildcard) parameterizations 
of generic types.  Wildcard parameterization in particular can lead to type 
inference failures 

Here is an example of a generic functional interface:  
@FunctionalInterface 
interface Factory<T> { 
  Generic<T> make(); 
} 
 

The functional interface Factory has the descriptor <T>()->Generic<T>, 
i.e., it has an unbounded type parameter, takes no arguments, does not 
throw checked exceptions, and returns a parameterization of a generic 
class named Generic.  

Method/Constructor References & Wildcard Target Types 

The generic Factory interface can be implemented by a constructor 
reference that refers to the default constructor of class Generic: 
Factory<?> f1 = Generic::new;                                 //1 
Factory<?> f2 = Generic<Object>::new;                         //2 
Factory<?> f3 = Generic<String>::new;        // error         //3 
Factory<?> f4 = (Factory<String>)Generic<String>::new;        //4 
 

The implementation of the generic functional interface Factory in line //1 
is via the constructor reference Generic::new.  Generic is a generic class 
and for this reason the function descriptor of its constructor is generic, 
namely <T>()->Generic<T>.  Since we did not specify a type parameter 
that would replace the unknown type T, the compiler must deduce the 
type parameter.  It does so by taking a look at the left-hand side of the 
assignment.  There it finds the wildcard parameterization Factory<?>, 
which imposes no requirements regarding the type parameter, but also 
does not provide any information for its inference.   The compiler then 
replaces the wildcard parameterization by a wildcard-free type for further 
type deduction and decides that the target type shall be Factory<Object>. 
(This is basically because the wildcard '?' does not have a bound; 
bounded wildcards would be replaced by their bound in this step of the 
type deduction.)  The type Factory<Object> is a viable target type.  It is 
compatible to the left-hand type Factory<?> and the constructor reference 
Generic::new can be converted to it. 
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Note, for the purpose of type inference the compiler treats the wildcard 
parameterization Factory<?> like Factory<Object> (or the raw type 
Factory for that matter). 

The implementation in line //2 is via the constructor reference 
Generic<Object>::new.  This time the constructor reference is no longer 
generic.  Instead it has the function descriptor ()-> Generic<Object> and 
can be converted to the target type Factory<Object>. 

The implementation in line //3 is via the constructor reference 
Generic<String>::new.  Its function descriptor is ()-> Generic<String> 
which can be converted to Factory<String>, but not to Factory<Object>.  
Since the compiler treats the left-hand side type Factory<?> like 
Factory<Object> for the purpose of target typing it issues an error 
message.   

In line //4 we inserted a cast to Factory<String> which changed the 
inference context from an assignment context to a casting context.  The 
relevant target type is now Factory<String>.  The constructor reference 
Generic<String>::new has the function descriptor is ()->Generic<String> 
which can be converted to the target type Factory<String>.   Hence, 
target typing works and line //4 compiles. 

Lambda Expressions & Wildcard Target Types 

Here are the same situations, this time using lambda expressions for 
implementation of the wildcard target type: 
Factory<?> f1 = ()->new Generic<>();                          //1 
Factory<?> f2 = ()->new Generic<Object>();                    //2 
Factory<?> f3 = (Factory<String>) ()->new Generic<Object>();  //3 
 

These work exactly like the constructor reference above.  For the first 
lambda expression the compiler must infer the missing type parameter 
and infers T:= Object.  The second lambda expression already has the 
matching function descriptor ()->Generic<Object>.  The third lambda 
expression is convertible to Factory<String> and requires an explicit cast. 

Anonymous Inner Classes & Wildcard Target Types 

Anonymous classes are treated differently regarding target typing.  In 
contrast to lambda expressions and method/constructor references, an 
anonymous inner class definition is not a poly expression.  It is a 
standalone expression and the compiler need not infer its type from the 
context.   

Let us see how the generic target type would be implemented by 
anonymous inner classes: 
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Factory<?> f1 = new Factory<>() {  /*error*/                  //1 
  public Generic<Object> make() { return new Generic<>(); } 
}; 
Factory<?> f2 = new Factory<Object>() {                       //2 
  public Generic<Object> make() { return new Generic<>(); } 
}; 
Factory<?> f3 = new Factory<String>() {                       //3 
  public Generic<String> make() { return new Generic<>(); } 
}; 
 

The first attempt in line //1ff is rejected by the compiler because the 
diamond operator '<>' is not permitted for the supertype of an 
anonymous inner class.  The supertype must be fully specified and must 
not require type inference. 

The different treatment regarding type inference is also visible in the third 
attempt in line //3ff where the anonymous class implements 
Factory<String>.  The corresponding implementations via a lambda 
expression or a constructor reference did not compiler without an explicit 
cast to Factory<String>.  No such cast is needed for the anonymous class 
because it is not subject to type inference. 
target types with generic method 

Target Types with a Generic Functional Method 

Functional interfaces can have a single abstract method that is a generic 
method.  Implementing such a functional interface requires that the 
implementation has a matching generic method.  In principle, functional 
interfaces can be implemented by classes, lambda expressions, and 
method/ constructor references.   The question is: can they provide a 
matching implementation of the required generic method?  The answer is: 
classes and method/constructor reference can, but lambda expressions 
cannot.7  Let us see why this is. 

Here is an example of a functional interface with a generic method:  
@FunctionalInterface 
interface Factory { 
  <T> Generic<T> make(); 
} 
 

It uses a generic type named Generic that looks like this: 
class Generic<X> { 
  public Generic() { ... } 
} 
 

                                                      

7 Functional interfaces whose single abstract method is generic have already been 
mentioned in the section on "Generic Lambda Expressions Not Permitted". 
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The functional interface Factory itself is not generic, but its singe abstract 
method is a generic method. The method's descriptor is <T>()-> 

Generic<T>, i.e., it has an unbounded type parameter, takes no arguments, 
does not throw checked exceptions, and returns a parameterization of 
Generic. 

Here is how the target type can be implemented by a constructor 
reference: 
Factory f1 = Generic::new; 
Factory f2 = Generic<?>::new;          // error: illegal syntax 
Factory f3 = Generic<Object>::new;     // error: incompatible 
 

The first implementation of the functional interface Factory is via the 
constructor reference Generic::new.  The compiler accepts it because it 
yields a generic function.  This is because Generic is a generic class and its 
constructor's function descriptor is generic, namely <T>()->Generic<T>.   

The second constructor reference Generic<?>::new is rejected because no 
wildcard types are permitted before the '::' symbol of a method/ 
constructor reference.  

The third constructor reference Generic<Object>::new is a legal one, but 
it is incompatible to the target type Factory.  The references 
Generic<Object>::new has the non-generic descriptor ()-> 

Generic<Object>, while the generic descriptor <T>()->Generic<T> is 
required. 

Any attempt of implementing the target type Factory with its generic 
abstract method by means of a lambda expression is doomed to fail.  Java 
does not support generic lambda expressions.  In order illustrate the lack 
of generic lambda expressions let us try write a generic lambda expression. 

Here are a couple of attempts to implement the target type's generic 
abstract method by a lambda expression: 
Factory f1 = () -> new Generic<>();      // error: incompatible 
Factory f2 = <T> () -> new Generic<T>(); // error: illegal syntax 
 

The first lambda expression yields the non-generic function descriptor, 
namely a function that takes no arguments, does not throw, and returns 
some parameterization of Generic.  It is incompatible to the generic 
method that the target type Factory requires. 

The second lambda expression is simply illegal.  There is no syntax for 
specification of type parameters for a lambda expression. 

In essence, lambda expressions cannot implement functional interfaces 
with a generic method. 
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Anonymous inner classes, of course, can implement functional interfaces 
with a generic method.  Here is an implementation of the target type by 
an anonymous inner class: 
Factory f1 = new Factory() { 
  public <T> Generic<T> make() { return new Generic<T>(); } 
}; 

Classes have no restrictions regarding the methods that they implement 
and can easily provide a generic method if required. 
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non-abstract interface method 

Non-Abstract Methods in Interfaces 
Traditionally, in Java all methods declared in an interface are abstract in the sense 
that an interface method just describes the signature of a method, but does not 
provide an implementation. The implementation has to be provided by a class 
that implements the interface and overrides the abstract methods. 

 Since Java 8, interface methods can be non-abstract, i.e., they can 
provide an implementation.  There are two types of non-abstract 
interface methods: 

 default methods, and  

 static methods. 

A default method is a method with the modifier default. Its body provides a 
default implementation for any class that implements the interface without 
overriding the method.  This allows new functionality to be added to existing (and 
perhaps already widely-distributed) interfaces without affecting any of the 
implementing classes.  

An interface may also declare static methods. They work in much the 
same way as static methods in classes, except that they are not inherited. 
They can only be invoked via the interface, not by means of a subtype or 
an object. 

An interface method that is neither default nor static is implicitly 
abstract.  
default methods 

Default Interface Methods 

Default methods were added to the Java programming language in Java 8 in order 
to permit interface evolution.8 Many of the existing JDK abstraction underwent a 
major overhaul for Java 8 and the library implementers had to modify these 
existing and widely used JDK classes for Java 8. Without default interface 
methods any modification of an existing interface had affected all implementing 
classes, i.e., a backward compatible modification had been impossible.  This lack 
of support for interface evolution lead to the invention of default interface 
methods. 

                                                      

8 This topic is also discussed in the Lambda Tutorial document (see the section on 
"Interface Evolution" in the Lambda Tutorial document). 



118 Default and Static Interface Methods 

 

For illustration we study an example of an interface that has been extended in 
JDK 8, namely the Comparator interface in package java.util.  Before Java 8 it 
looked like this: 

The Comparator interface before Java 8: 
public interface Comparator<T> { 
    int compare(T o1, T o2); 
    boolean equals(Object obj); 
} 
 

It has a compare method, which is an abstract method that subclasses must 
implement. In addition it has an equals method, which is not an abstract 
method, but a method inherited from class Object that subclasses need not 
implement. 

Since Java 8 the Comparator interface has additional non-abstract methods, 
among them two default methods.  They provide useful functionality 
implemented on top of the abstract compare method such as creation of a 
comparator for the reverse sorting order or composition of comparators. 

Excerpt of the Comparator interface since Java 8: 
public interface Comparator<T> { 
    int compare(T t1, T t2); 
    boolean equals(Object obj); 
    default Comparator<T> reverseOrder() { 
       return Collections.reverseOrder(this); 
    }  
    … 
} 
 

The other default method is the thenComparing method that exists in half a 
dozen overloaded versions. 

Default methods are qualified by the modifier default and are implicitly public.  
A default method must have a body with an implementation.  For the 
implementation of the reversOrder method the original comparator is used - 
referred to via the this keyword.   

Here is an example of using the reverse comparator: 
void testComparator() { 
        String[] array =  {"a", "b", "c"}; 
        Comparator<String> cmp = (x,y)-> x.compareTo(y); 
        Arrays.sort(array,cmp); 
        System.out.println(Arrays.toString(array)); 
        Arrays.sort(array,cmp.reverseOrder()); 
        System.out.println(Arrays.toString(array)); 
} 
 

The resulting output is: 
[a, b, c] 
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[c, b, a] 
 

For implementation of the default method reverseOrder we used the this 
reference and a static method from an unrelated class, namely the 
reverseOrder method from class Collections.  For providing an 
implementation of a default method we can also use all the arguments 
passed to the method, if any, and all other methods defined in the 
interface.  This is illustrated by the thenComparing method defined in the 
Comparator interface. 

A more complete excerpt of the Comparator interface since Java 8: 
public interface Comparator<T> { 
    int compare(T t1, T t2); 
    boolean equals(Object obj); 
    default Comparator<T> reverseOrder() { 
       return Collections.reverseOrder(this); 
    }  
    default  
    Comparator<T> thenComparing(Comparator<? super T> other) { 
        Objects.requireNonNull(other); 
        return (Comparator<T> & Serializable) (c1, c2) -> { 
            int res = compare(c1, c2); 
            return (res != 0) ? res : other.compare(c1, c2); 
        }; 
    } 
    … 
} 

It uses the abstract compare method for its implementation. 

Basically, a default interface method is implemented on top of the rest of 
the interface, i.e., by means of the abstract and non-abstract methods 
defined in the interface.  A default method typically provides functionality 
that is a combination or adaptation of the abstract interface methods. 

One restriction (compared to non-abstract methods in classes) remains: 
interfaces still do not have data.  Interfaces may define constants, i.e., final 
fields with compile-time constant values, but interfaces must not define 
regular, mutable, non-final fields (like a class may do).   
accessibility of default methods 

Modifiers - Permitted and Prohibited  

Default interface methods are implicitly public; they can neither be 
protected, private, nor package visible.  There is no compelling reason 
for this restriction regarding the accessiblity modifiers.  Non-public 
accessibility is rarely needed and there were simply more important issues 
to care about.  It is, however, conceivable that future versions of Java may 
allow the full set of accessiblity modifiers. 



120 Default and Static Interface Methods 

 

Default interface methods must not be abstract, which is obvious since a 
default method is expressly meant to be overridden by a subclass.  

Default interface methods must not be static.  This, too, is sensible 
because default interface methods are non-static methods that are 
inherited into subtypes and may be overridded by subclasses. 
final default methods 

Default interface methods must not be final. There are two reasons for 
this.  The first reason is that is was expressly intended that default 
interface methods should be overridable.  Every subclass should be 
allowed to provide an alternative implementation for the default 
implementation offered by the interface. 

The second reason is interface evolution.  When a default method is 
added to an interface then it might have the same name as an existing 
method in an existing class that already implements the interface.  If the 
additional interface method is non-final then the existing class method 
simply overrides the default interface method and no harm is done.  If, in 
contrast, the default interface method were final, then the existing class 
would no longer compile because it illegally attempts to override a final 
method.  So, for reasons of backward compatibility a default interface 
method cannot be declared final. 
multiple inheritance 

Multiple Inheritance 

In the initial design of the Java language, interfaces were intended for the 
abstract description of a concept, i.e., they had no data and no 
functionality.  Since Java 8 interfaces can have default methods and for 
this reason can provide pieces of implementation, which begs the 
question whether interfaces are pure API descriptions any longer.  

An interface with default methods clearly does not meet the criteria of a 
pure API description any longer because it does have functionality.  Is it a 
problem?   

The answer to this question is related to multiple inheritance, which is a language 
feature that was deliberately restricted in Java to multiple inheritance of (purely 
abstract) interfaces.  When Java was invented, multiple inheritance in general was 
considered "to bring more grief than benefit".9  For this reason, the language 
designers allowed multiple inheritance only for interfaces and restricted it to single 
inheritance for classes. 

                                                      

9 Quoted from "Java: an Overview" by James Gosling, February 1995, 
http://www.cs.dartmouth.edu/~mckeeman/cs118/references/OriginalJavaWhitepaper.p
df. 
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deadly diamond of death 

The Deadly Diamond of Death 

The misgivings regarding multiple inheritance stem from programming 
languages that do have multiple inheritance of classes, most prominently 
C++.  The problem of multiple inheritance occurs with a diamond shaped 
inheritance, sometimes refer to the deadly diamond of death. It is a situation 
where two types B and C are subtypes of another type A and then there is 
a type D that is a subtype of both type B and C. 

 
Diagram: Multiple Inheritance - The "deadly diamond of death" 

Exactly this type of multiple inheritance causes trouble, if type A has state.  A's 
state is inherited by its subtypes.  An obvious question pops up: does D have one 
or two A-parts?  After all, B inherits an A-part and C inherits an A-part.  Should 
D then have two A-parts?  Or perhaps just one?  The C++ programming 
language permits the diamond shaped multiple inheritance among classes with 
data members and, to boot, offers both choices: it has virtual and non-virtual 
multiple inheritance, which leaves the decision regarding one or tow A-parts to 
the programmer.   Making this decision already creates headache.  Then there is 
the issue of "Who initializes the A-part, if there is only one A-part? B, C, or D?"  
Plus, there are tons of ambiguities with multiple inheritance.  For instance, what 
does it mean if A, B, and C have a overlapping methods with the same name and 
signature and we invoke the method on a reference of type D?  How does the 
compiler resolve the method call? 
peril of multiple inheritance 

Fortunately, the most nasty multiple inheritance situation, namely the 
"deadly diamond of death" illustrated above is no issue in Java, not even 
with default methods in Java 8.  Java remains restricted to single 
inheritance of classes and permits multiple inheritance only for interfaces. 
For this reason, type A in the diamond shaped inheritance must be an 
interface in Java; it cannot be a class.  This is because type D is derived 
from type B and C.  A subclass (like D) can only have one direct 
superclass, i.e., at most one of the two types B or C can be class; the other 
one must be an interface.  Because type A is the supertype of at an 
interface (either B and/or C) it must be an interface, too.   

If type A in "deadly diamond of death" is an interface then there is no 
question regarding how many A-parts type D will have. Type A does not 
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have state and hence there is no such thing as an A-part neither in B, C, or 
D.   
programming with default methods 

Programming with Default Methods 

Default methods were invented primarily for interface evolution, namely 
painless extension of interfaces that already have implementing subclasses.  
In practice, default methods can be used for many other things.  They 
have the potential for changing the way in which we go about developing 
APIs. 

Traditionally, we go about the business of developing an API in several steps: 

 Step 1: Interfaces.  First, we describe a new API as a pure abstraction by 
defining an interface without any implementations.  

 Step 2: Abstract Classes.  In a subsequent step we provide partial 
implementations of the interface.  

 Step 3: Concrete Classes.  Of these abstract classes we derive further classes that 
eventually are complete and no longer abstract. 

Now, that we have default methods we still describe a new API by declaring a 
bunch of interface methods without any implementation.  But the immediate 
next step might be definition of default methods that combine the yet abstract 
interface methods to useful additional functionality.  Only then would we start 
providing actual implementations in terms of abstract and concrete classes.   This 
way, part of what we used to do in step 2 now becomes part of step 1. 

Since Java 8, we may choose to develop an API this way: 

 Step 1a: Abstract Interface Methods. First, we describe a new API as a pure 
abstraction by defining an interface without any implementations. 

 Step 1b: Default Interface Methods.  Then, we add default methods that are 
defined on top of the abstract interface methods. 

 Step 2: Abstract Classes.  In a subsequent step we provide implementations for 
some of the abstract interface methods in a (potentially abstract) subclass.  

 Step 3: Concrete Classes.  Of these abstract classes we derive further classes that 
eventually are complete and no longer abstract. 

Let us explore a couple of examples of the usefulness of default methods.   

Example #1: Genuine Default Functionality 

The Iterator interface from package java.util requires three methods: 
hasNext, next, and remove.  In many iterator implementations the remove 
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method does not make sense and remains unsupported.  Yet, the 
implementing class must provide an implementation of the remove 
method.  Usually it just throws an UnsupportedOperationException. 

Since Java 8 the Iterator interface has a default implementation of the 
remove method.  Here is an excerpt of the Iterator interface: 
public interface Iterator<E> { 
  boolean hasNext(); 
  E next(); 
  default void remove() { 
    throw new UnsupportedOperationException("remove"); 
  } 
  … 
} 
 

In this example the default method is used to provide an actual default.  It 
frees subclasses from the burden of implementing an abstract interface 
method that thay do not intend to support. 

Example #2: Orthogonal Functionality 

Consider the Comsumer interface in package java.util.function of the JDK.  
It is the interface that is used in conjunction with the stream's forEach method.  
It declares a single accept method.  On top of this not yet implemented accept 
method one can already provide useful functionality such as creating a chain of 
two consumers. 
@FunctionalInterface 
public interface Consumer<T> { 
  public void accept(T t); 
 
  public default Consumer<T> andThen(Consumer<? super T> other){ 
        return (T t) -> { accept(t); other.accept(t); }; 
  } 
} 
 

Here is an example of using a chain of consumers for printing the elements of a 
sequence to two output channels: 
String[] names = {"Eric", "Emma", "Eleanor"}; 
Arrays.stream(names).forEach( 
   ((Consumer<String>)System.out::println) 
   .andThen(System.err::println) 
); 
 

The forEach method then prints the strings to both System.out and 
System.err in one pass over the sequence. 

In this example the default method is used to provide an orthogonal, additional 
piece of functionality, namely a factory for creation of a new Consumer. 
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Example #3: Convenience Functionality 

The Stream interface, too, illustrates how helpful default methods can be.  Similar 
to the Collection interface the Stream interface has two toArray methods: 
public interface Collection<E>  { 
    ... 
    <T>  T[] toArray(T[] a); 
    Object[] toArray(); 
    ... 
} 
 
public interface Stream<T>  { 
  <A> A[] toArray(IntFunction<A[]> generator); 
 
  default Object[] toArray() { 
    IntFunction<T[]> generator = s -> (T[]) new Object[s]; 
    return toArray(generator); 
  } 
} 
 

While the Collection interface forces each implementing class to implement 
both toArray methods the Stream interface requires only one implementation 
and supplies the second toArray method as a default method implemented 
based on the first one. 

In this example the default method is used to provide a convenience method that 
is a slight variation of an existing method.  This is different from the previous 
example where the default method provided orthogonal functionality. 

Example #4: Adapter Functionality 

Default methods can be used for retrofitting.  Remember the Enumeration 
interface that came as part of JDK 1.0 and is for instance used by class Vector. It 
was later superseded in Java 1.2 by the Iterator interface.  The enumeration is 
similar to an iterator, but its methods have different names.  With default 
methods it is easy to have the Enumeration interface extend the Iterator 
interface. 
interface Enumeration<E> extends Iterator<E> { 
  boolean hasMoreElements(); 
  E nextElement(); 
 
  default boolean hasNext() { return hasMoreElements(); } 
  default E       next()    { return nextElement(); } 
  default void    remove()  { throw new           
                                 UnsupportedOperationException();  
                            } 
} 
 

With this simple extension of the Enumeration interface, every enumeration 
could serve as an iterator.  The retrofitting suggested above is a hypothetical one.  
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The JDK does not provide this kind retrofitting because it is not needed.  Class 
Vector itself was retrofitted and implements both the Enumeration and the 
Iterator interface.  However, the enhanced Enumeration interface illustrates 
how default methods can be used for adaptations and retrofittings. 

In this example the default methods serve as an adapter that maps the methods 
of one interface to the methods of another interface. 

Example #5: Distinction From (Abstract) Classes 

Now that interfaces can supply functionality in form of default methods, do we 
still need abstract classes or are they obsolete?  It turns out that (abstract) classes 
are still needed.  Let us take a look at a situation in which interfaces do not suffice 
to solve a given problem. 

Consider the following interface: 
interface Name { 
  String getFirstName(); 
  String getMiddleName(); 
  String getLastName(); 
} 
 

and its implementing class: 
class NamedPerson implements Name { 
  private String firstName; 
  private String middleName; 
  private String lastName; 
 
  public NamedPerson(String first, String middle, String last) { 
    firstName  = first; 
    middleName = middle; 
    lastName   = last; 
  } 
  public String getFirstName() { 
    return firstName; 
  } 
  public String getMiddleName() { 
    return middleName; 
  } 
  public String getLastName() { 
    return lastName; 
  } 
  public String getName() { 
    return firstName 
         +(middleName!=null&&middleName.length()>0? 
                                 " "+middleName.charAt(0)+'.':"") 
         +" "+lastName; 
  } 
  public String toString() { 
    return String.format("%-12s= %s\n%-12s= %s\n%-12s= %s" 
      ,"firstName" ,firstName 
      ,"middleName",middleName 
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      ,"lastName"  ,lastName 
    ); 
  } 
} 
 

This is how we would split the API into an interface and a class traditionally, i.e., 
without default method.  Using default methods we can provide the getName 
method in the interface already, because it is a mere convenience method that can 
be implemented on top of the three abstract interface methods. 

After moving the getName method from the class to the interface it looks like 
this: 
interface Name { 
  String getFirstName(); 
  String getMiddleName(); 
  String getLastName(); 
 
  default String getName() { 
    return getFirstName() 
        +((getMiddleName()!=null&&getMiddleName().length()>0)? 
                            " "+getMiddleName().charAt(0)+'.':"") 
        +" "+getLastName(); 
  } 
} 
 
class NamedPerson implements Name { 
  private String firstName; 
  private String middleName; 
  private String lastName; 
 
 
  public NamedPerson(String first, String middle, String last) { 
    firstName  = first; 
    middleName = middle; 
    lastName   = last; 
  } 
  public String getFirstName() { 
    return firstName; 
  } 
  public String getMiddleName() { 
    return middleName; 
  } 
  public String getLastName() { 
    return lastName; 
  } 
  public String toString() { 
    return String.format("%-12s= %s\n%-12s= %s\n%-12s= %s" 
      ,"firstName" ,firstName 
      ,"middleName",middleName 
      ,"lastName"  ,lastName 
    ); 
  } 
} 
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Basically, we can implement all methods as default interface method that can be 
built on top of the abstract inferface methods.   

Following this line of logic one might want to implement the toString method 
as a default interface method, too.  This, however, is not permitted, because 
toString already has an implementation in the Object superclass.  Any class that 
implements the Name interface would inherit two implementations of the 
toString method.  The method defined in class Object would always win and 
the default interface method would always be ignored.  In other words, defining a 
default interface method toString in an interface is pointless and for this reason 
prevented by the compiler right away.10 

The three getter methods cannot be implemented as default interface method 
because they need access to data and interfaces cannot store data.  This means 
that all methods that need access to data stored in fields must be implemented as 
class methods. 

The example illustrates that default method allow implementation of methods 
that need no data and are typically combinations of the abstract interface 
methods.  All methods that need data access must be implemented in abstract or 
concrete classes.  
ambiguous default methods 

Ambiguities Involving Default Interface Methods 

As both interfaces and classes supply non-abstract methods to their 
subclasses, the same method can be inherited from different supertypes.  
This can lead to conflicts.  For illustration, here are a couple of ambiguity 
examples: 

Ambiguity #1:  

A class C2 inherits a method foo from both an interface I and a class C1. Which 
method does subclass C2 inherit? 

Example: Ambiguous Multiple Inheritance - Class wins over interface. 

                                                      

10 More on conflicts and ambiguities caused by default interface methods can be found in 
the section on "Ambiguities Involving Default Interface Methods" and "Ambuity #7" in 
particular. 
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interface I { 
  default void foo() {...} 
} 
class C1 implements I { 
  public void foo() {...} 
} 
class C2 extends C1 {}  

  

The simple rule is: the class wins.  The foo method present in subclass C2 
is the one inherited from superclass C1.  This behaviour reflects the idea 
of default methods: default methods are a fallback if the class hierarchy 
doesn't provide anything. 

Ambiguity #2:  

A class C inherits a method foo from an interface I1 which inherits the same 
method foo from its superinterface I2. Which method does class C inherit? 

Example: Ambiguous Multiple Inheritance - Closest super interface wins. 

 
interface I1 { 
  default void foo() { ... } 
} 
interface I2 extends I1 { 
  default void foo() { ... } 
} 
class C implements I2 {}  

 

 

The rule is: the closest super interface wins.  The foo method present in 
subclass C is the one inherited from interface I2. 

Ambiguity #3:  

A class C inherits a method foo from both an interface I1 and an interface I2.  
This time the two interfaces are not derived from each other and there is no 
closest interface. Which method does class C inherit? 

Example: Ambiguous Multiple Inheritance - Compile-time error; needs 
explicit resolution. 
interface I1 { 
  default void foo() { ... } 
} 
interface I2 { 
  default void foo() { ... } 
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} 
class C implements I1, I2 {}  // error 
 

 
The compiler cannot resolve it and reports an error.  The situation can be 
resolved by explicitly stating which method class C is supposed to inherit.  A 
resolution could look like this: 

Example: Disambiguation via interface.super in a subclass. 
interface I1 { 
  default void foo() { … } 
} 
interface I2 { 
  default void foo() { … } 
} 
class C implements I1, I2 { 
  public void foo() {     
    I2.super.foo();  
  } 
} 
 

 
The method invocation via interface.super is not restricted to methods of 
classes; it can also be used in default methods of interfaces.  Here is an example: 

Example: Disambiguation via interface.super in an subinterface. 
interface I1 { 
  default void f() { … } 
} 
interface I2 { 
  default void f() { …} 
} 
interface I3 extends I1, I2 { 
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  default void f() { 
    I1.super.f(); 
  } 
} 
 

Ambiguity #4:  

A class C inherits a method foo from both an interface I1 and an interface I2.  
The method is abstract in one interface and has a default implementaion in the 
other interface. Is method foo abstract or default in class C? 

Example: Ambiguous Multiple Inheritance - Compiler-time error; needs 
explicit resolution. 
interface I1 { 
  default void foo()  
  { ... } 
} 
interface I2  
{  void foo();  } 
class C implements I1, I2 
{}  // error 

 
 

The compiler cannot resolve it and reports an error.  The situation can be 
resolved by explicitly declaring the method as abstract or by implementing it.  A 
resolution would look like this: 
class C implements I1, I2 { 
   public void foo() { I2.super.foo(); } 
} 
 

or like this: 
abstract class C implements I1, I2 { 
   public abstract void foo(); 
} 
 

Ambiguity #5:  

A class C inherits from an super-interface I2 which inherits from a super-super-
interface I1.  The topmost interface I1 has a default version of a method foo. 
The direct interface I2 declares the same method foo as abstract. Class C inherits 
the closest version of method foo, which is the abstract one from interface I2.  
What if class C wants to use the grandparents default method? 

The following is illegal because the interface preceding the super keyword must 
be a direct superinterface.   

Example: No access to super-super-interface's default method. 
interface I1 { 
  default void foo() { ... } 
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} 
interface I2 extends I1 { 
  void foo(); 
} 
class C implements I2 { 
  public void foo() { 
    I1.super.foo();  // error 
  } 
} 
 

 
It is illegal to skip the direct interface.  The following is illegal, too.  It is the 
attempt to get access to the super-super-interface's default method by simply 
repeating it as direct interface. 

Example: Cannot skip direct interface. 
interface I1 { 
  default void foo() { ... } 
} 
interface I2 extends I1 { 
  void foo(); 
} 
class C implements I1, I2 { 
  public void foo() { 
    I1.super.foo();  // error 
  } 
}  
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As a work-around we can define an additional interface as a helper that exposes 
the desired behaviour with a super method invocation.  Here is the helper 
interface: 

Example: Work around via helper interface. 
interface I1 { 
  default void foo() { ... } 
} 
interface I2 extends I1 { 
  void foo(); 
} 
interface I1H extends I1 { 
  default void foo() {  
    I1.super.foo();  
  } 
} 
class C implements I1H, I2 { 
  public void foo() { 
    I1H.super.foo();  // fine 
  } 
}  
 

 

Ambiguity #6:  

A class C inherits a method foo from both two interfaces I2 and I3 that share a 
common ancestor I1.  One of the direct superinterfaces overrides the method, 
the other does not. . Which method does class C inherit? 

Example: Ambiguous Multiple Inheritance - The closest method wins. 
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interface I1 { 
  default void foo() { ... } 
} 
interface I2 extends I2 { 
  default void foo() { ... } 
} 
 
interface I3 extends I1 { 
  void foo(); 
} 
class C implements I2, I3 {} 

  

Again, the closest method wins. Methods (like I1::foo) that are already 
overridden by other candidates (by I2::foo in the example) are ignored. 

Ambuity #7: 

An interface defines methods from class Object as default methods.  For 
instance, an interface might attempt to provide default implementations 
of the hashCode, equals, or toString method. 

Example: Default Methods for Public Methods from Class Object 
interface I { 
  default String toString() { … }              // error 
  default boolean equals(Object other) { … }   // error 
  default int hashCode() { … }                 // error 
} 
 

 
Providing default interface methods that collide with public methods 
from class Object is not permitted.  The reason is that a class that 
implements the interface would inherit two versions of the method, the 
one implemented in class Object and the one implemented in the 
interface.  The method from class Object would always win (see 
Ambiguity #1).  Hence it is pointless to provide default implementations 
of hashCode, equals, or toString and the compiler prevents it right away. 
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It is permitted to provide a default implementation of the clone method from 
class Object.   It is, however, debatable. 

Example: Default Method for Protected clone Method from Class Object 
interface I extends Cloneable { 
  default I clone() { … } 
} 
class C implements I { … }  // error 
 

 
The compiler rejects class C because it inherits the protected clone method from 
class Object and the public default method from interface I.  Since the class's 
method wins it is an attempti to assign weaker access privileges to the clone 
method:  it was public in a supertype (interface I) and is now protected in class C. 

All classes can, of course, override the interface's default clone method, which 
renders the default implementation entirely pointless.  Interestingly, an overriding 
method in the class can refer to the default method defined in the interface. 

Example: Default Implementation of clone is Overridden and Used: 
interface I extends Cloneable { 
  default I clone() { … } 
} 
class C implements I { 
  return (C)I.super.clone(); 
} 
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The approach is debatable though.  It is hard to imagine that the interface can 
provide a reasonable default implementation of a clone method.  Cloning is 
usually about copying data stored in the instance fields and the interface does not 
have access to any instance field.  Situations where a default clone method in an 
interface is useful will probably be rare. 

 

The list presented here of examples of ambiguous multiple inheritance is 
by no means comprehensive.  Many more ambiguities can occur.  In 
practice they are harmless.  There is a resolution rule for most situations 
and in those few cases where the compiler cannot resolve the ambiguity 
there is syntax for explicit resolution. 
static inferface methods 

Static Interface Methods 

Since Java 8, interfaces may define static methods.  Like default methods 
they must have an implementation.  Static methods were added to the 
language because occasionally an interface is the most appropriate place to 
declare methods that produce or manipulate objects of the interface type.   

Here is an example of an interface with a static method.  It is the Predicate 
interface from package java.util.function: 

Example of a static interface method: 
@FunctionalInterface 
public interface Predicate<T> { 
    boolean test(T t); 
    static <T> Predicate<T> isEqual(Object targetRef) { 
        return (null == targetRef) 
                ? Objects::isNull 
                : object -> targetRef.equals(object); 
    } 
    … 
} 
 

The static interface method isEqual is a factory method that creates a new 
predicate which yields true if the tested value is equal to a particular value.  Here 
is an example of using it: 
Predicate<Integer> isFive = Predicate.isEqual(5); 
Stream.of(0,1,2,3,4,5,6,7,8,9) 
      .filter(isFive) 
      .forEach(System.out::println); 
  

In the example we create a predicate names isFive that test whether a value is 
equals to 5. 
difference static / default method 
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Static vs. Default Interface Methods 

How do default interface methods differ from static interface methods?  
Both are non-abstract and have implementations. The difference is that 
default methods can access all members of the interface whereas static 
methods may only access static members.  Also, a default method in a 
generic interface has access to the interface's type variables whereas a 
static method has no access to the type variables.  It is exactly the same 
distinction as between static and non-static methods in classes. 

The Predicate interface illustrates the difference.  It has default methods 
in addition to the abstract and static method.   
@FunctionalInterface 
public interface Predicate<T> { 
  boolean test(T t); 
 
  static <T> Predicate<T> isEqual(Object targetRef) { 
    return (null == targetRef) 
           ? Objects::isNull 
           : object -> targetRef.equals(object); 
  } 
  default Predicate<T> negate() { 
    return (t) -> !test(t); 
  } 
  default Predicate<T> and(Predicate<? super T> other) { 
    Objects.requireNonNull(other); 
    return (t) -> test(t) && other.test(t); 
  } 
  default Predicate<T> or(Predicate<? super T> other) { 
    Objects.requireNonNull(other); 
    return (t) -> test(t) || other.test(t); 
  } 
} 
 

The static method isEqual does not invoke any of the interface's 
methods; in particular it does not access any non-static members of the 
Predicate interface.  In contrast, the default method negate calls the 
abstract method test.  It must be non-static. 

The default method negate is a factory method, too.  Here is an example of 
using it: 
Predicate<Integer> isNotFive = isFive.negate(); 
Stream.of(0,1,2,3,4,5,6,7,8,9) 
      .filter(isNotFive) 
      .forEach(System.out::println); 
  

The default method negate creates a new predicate that is an adapter of 
an existing predicate.  It yields true when the adaptee returns false and 
false when the adaptee returns true.   



Default and Static Inferface Methods 137 

 

More generally, static interface methods can invoke other static interface 
methods and have access to compile-time constant fields defined in the 
interface, but they cannot call abstract and default methods.  Here is an 
example: 
interface I { 
  int CONSTANT = 42; 
  abstract void abstractMethod(); 
  default  void defaultMethod1() {} 
  static   void staticMethod1() {} 
         
  default void defaultMethod2() { 
    int i = CONSTANT; 
    abstractMethod(); 
    defaultMethod1(); 
    staticMethod1(); 
  } 
  static void staticMethod2() { 
    int i = CONSTANT; 
    abstractMethod();              // error 
    defaultMethod1();              // error 
    staticMethod1(); 
  } 
} 
 

The access to constant values is because they are implicity public, static, 
and final.  Abstract and default methods, in contrast, are implicitly 
public. 

Similarly, static interface methods have no access to type variables of the 
enclosing interface, but they do have access to nested types.  Here is an 
example: 
interface I<T> { 
  interface NestedInterface {} 
  class     NestedClass {} 
  enum      NestedEnum {ENUM} 
 
  default  void defaultMethod() { 
    T t; 
    NestedInterface x; 
    NestedClass     y = new NestedClass(); 
    NestedEnum      z = NestedEnum.ENUM; 
  } 
  static   void staticMethod() { 
    T t;                                  // error 
    NestedInterface x; 
    NestedClass y = new NestedClass(); 
    NestedEnum  z = NestedEnum.ENUM; 
  } 
} 
 

Again, this is because nested types defined in an interface are implicitly 
static. 
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accessibility of static interface methods 

Modifiers - Permitted and Prohibited  

Static interface methods are implicitly public; they can neither be declared 
protected, nor private, nor package visible. There is no compelling 
reason for this restriction regarding the accessiblity modifiers.  Non-public 
accessibility is rarely needed and there were simply more important issues 
to care about.  It is, however, conceivable that future versions of Java may 
allow the full set of accessiblity modifiers. 

Static interface methods must not be abstract. This is in line with the 
same rule for static class methods. 

Static interface methods must not be qualified as default method.  
Default methods are meant as non-static methods.  The combination of 
the modifiers static and default is illegal. 

Static interface methods must not be final. This is different from static 
methods in classes.  For a static class method the final qualifier prevents 
redefinition of the method in a subclass.  For a static interface method the 
final qualification is not needed because static interface methods cannot 
be overridden; they must be invoked via their exact type - as we will see in 
the next section. 
difference static interface / class methods 

Static Interface vs. Static Class Methods 

We can implement static methods in interfaces and we can implement static 
methods in classes.  How do they differ? 

Static interface methods differ from static class method in three aspects: 

 They cannot be invoked via an instance. 
 They can only be invoked via the interface type in which they are 

declared. 
 They are not inherited. 
 
A static class method can be invoked either using the class name or using a 
reference to an object.  A static interface method must be called via the interface 
name; using an object reference is not allowed for invocation of a static interface 
method.  Here is an example: 
interface I { 
  public static void f() { … } 
} 
class C implements I { 
  public static void f() { … } 
} 
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public static void main(String... args) { 
  I ir = new C(); 
  C cr = new C(); 
  ir.f();             // error 
  cr.f();             // fine 
  I.f(); 
  C.f(); 
} 
 

The example shows that the static interface method cannot be called using an 
object reference. 

A static class method can be invoked via the class type in which the static method 
is defined or via any subclass thereof.  A static interface method must be called via 
the interface type in which the static method is defined; using a subtype for for 
invocation of a static interface method is not permitted.  Here is an example: 
interface I1 { 
  public static void f() { … } 
} 
interface I2 extends I1 { 
} 
class C1 implements I2 { 
  public static void f() { … } 
} 
class C2 extends C1 implements I2 { 
} 
 
public static void main(String... args) { 
  I1 ir1 = new C2(); 
  I2 ir2 = new C2(); 
  C1 cr1 = new C2(); 
  C2 cr2 = new C2(); 
  I1.f(); 
  I2.f();        // error 
  C1.f(); 
  C2.f();        // fine 
} 
 

The example illustrates that a derived interface cannot be used for 
invocation of a static interface method.  Essentially it means that static 
class methods are inherited, but static interface methods are not. 

Static Import for Interface Methods 

Static interface methods can be imported.  There is no difference 
compared to static class methods.   Here is an example: 
package package1; 
public interface I { 
  public static void f() { … } 
} 
class C implements I { 
  public static void g() { … } 
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} 
 
package package2; 
 
import static package1.I.*; 
import static package1.C.*; 
 
public static void main(String... args) { 
  f(); 
  g(); 
} 
 

Note that a static class method with out an accessibility qualifier cannot 
be imported because it is only package visible, whereas a static interface 
method without an accessibility qualifier is public by default and can be 
imported. 
inheritance of static interface methods 

Inheritance of  Static Methods 

Static methods in interfaces look like static methods in classes and work in 
much the same way, except that they are not inherited. Inheritance of 
static interface methods is deliberately disallowed in order to prevent that 
modification of an interface by adding a static method breaks the code of 
existing subclasses.  In general, the goal is that non-abstract methods (i.e. 
static and default methods) can be added to an interface without affecting 
the interface's subclasses. 

This is different for static methods in classes.  It has never been a goal to prevent 
that modification of a superclass has no effect on its subclasses.  For this reason 
inheritance of static class methods is permitted and it is accepted that adding a 
static method to a superclass can break the subclasses' code.   

For illustration of the difference between inheritance of static methods in 
interfaces and classes we will study two type hierarchies in which we will modify 
the topmost supertype by adding a static method.  First the topmost supertype is 
a class.  Then we consider a situation where the topmost supertype is an interface.  

First we consider an example with classes.  Here is the initial class hierarchy: 
interface SuperInterface { 
} 
class SuperSuperClass  { 
} 
class SuperClass extends SuperSuperClass  
      implements SuperInterface { 
  public static void method(SuperClass arg) { ... } 
} 
class SubClass extends SuperClass { 
} 
 

When we invoke the method as follows: 
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SuperClass.method(new SubClass());      
                          // calls SuperClass::method(SuperClass) 
 

the expected happens: the SuperClass's method is invoked and its argument of 
type SubClass is converted to the required parameter type SuperClass. 

Now we modify the superclass and add a static method with the same name but a 
different argument type to the SuperSuperClass.  
interface SuperInterface { 
} 
class SuperSuperClass  { 
  public static void method(SubClass arg) { ... } 
} 
class SuperClass extends SuperSuperClass  
      implements SuperInterface { 
  public static void method(SuperClass arg) { ... } 
} 
class SubClass extends SuperClass { 
} 
 

We do not change the method invocation; it is exactly the same as above: 
SuperClass.method(new SubClass());      
               // now calls SuperSuperClass::method(SubClass) !!! 
 

Yet another method is called, namely the new one from the SuperSuperClass 
whose declared parameter type perfectly matches the argument type so that no 
conversion is required.   

This perhaps unexpected effect occurs because static methods in classes are 
inherited.  After adding a static method to the superclass the compiler can choose 
between two candidate methods and picks the better match.  The same would 
happen if static methods in interfaces were inherited.  Adding a static method to 
an interface could silently change the meaning of existing code.  Since default and 
static interface methods were intended for interface evolution, any side effects on 
existing code is undesired and for this reason static interface method are not 
inherited. 

In order to see the difference we now added a static method to the interface 
instead of the superclass: 
interface SuperInterface { 
  public static void method(SubClass arg) { ... } 
} 
class SuperSuperClass  { 
} 
class SuperClass extends SuperSuperClass  
      implements SuperInterface { 
  public static void method(SuperClass arg) { ... } 
} 
class SubClass extends SuperClass { 
} 
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We do not change the method invocation; it is exactly the same as above: 
SuperClass.method(new SubClass());      
                    // still calls SuperClass::method(SuperClass) 
 

This time the added static method does not change the meaning of the method 
invocation.  The static interface method is not inherited, which means it cannot 
be qualified by a subtype's name.  The only type qualifier permitted for the static 
interface method is the name of the declaring interface.  That is, 
SuperClass.method and SubClass.method refer to the static class method, 
whereas SuperInterface.method is the only permitted reference to the static 
interface method. 
programming with static interface method 

Programming with Static Interface Methods 

How the Java community will ultimately be using static interfaces 
methods remains to be seen.   In the following we take a look at the usage 
of static interface methods in the JDK: 

Example #1: Substitution of Companion Classes 

In a library like the JDK there are situations where functionality is closely 
related to an abstraction that is expressed as an interface.  An example is 
the Collection interface in package java.util.  It describes the 
operations that are common to all collections such as add, remove, 
contains, size, clear, etc. Concrete subclasses, such as ArrayList and 
HashSet, provide implementations for this interface.  Algorithms that 
perform useful functions on collections, such as max, min, or sort for 
instance, are implemented separately as static methods in a companion 
class named Collections.    

Such pairs of an interface and a companion class with static support 
methods are fairly common.  The pair Collection / Collections is one 
example.  There are other examples, for instance Executor / Executors in 
package java.util.concurrent, Channel / Channels in package java.nio, 
Path / Paths in package java.nio.file.  The companion class is usually, 
but not always, named after the corresponding interface and uses the 
plural of the interface's name as its name. 

In principle, one could now get rid of all the companion classes by 
moving the companion classes' static methods to the related interface.   

Collection / Collections 

In the case of the Collection / Collections pair it turns out that the 
Collections class has so many static methods (~60 methods) that their 
addition to the Collection interface would overwhelm the comparatively 
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slim interface (~20 methods).  To boot, class Collections has methods 
related to other interface such as List and Set, for instance adapter 
methods such as synchronizedList and synchronizedSet, which could or 
should be relocated to the List or Set interface instead of the Collection 
interface.  

So, for historic reasons and for sake of backward compatibility, the 
Collection / Collections pair will not be unified by means of static 
interface methods. 

Let us take a look at more recently designed abstractions such as streams 
and collectors for instance. 

Stream / Streams 

Package java.util.stream has an interface Stream with many non-static 
methods (~ 40 methods) and a handful of static method (6 methods).  
Most static method in interface Stream are factory methods that create 
new streams like for instance 
static <T> Stream<T> empty() 
static <T> Stream<T> of(T... values) 
static <T> Stream<T> generate(Supplier<T> s) 
… 
 

Initially, these static factory methods were located in a separate 
companion class Streams, but eventually the decision was that they were 
too few to deserve a class of their own.   

Collector / Collectors 

Another example is the pair Collector / Collectors in package 
java.util.stream.  The companion class Collectors has more that 30 
static methods, whereas the Collector interface has only 5 abstract 
methods.  Adding ~30 static methods to an interface with just 5 abstract 
methods renders the interface unreadable.  After all the key feature of an 
interface is its abstracts methods and they should not disappear in an 
abundance of static methods.   

Note that the previous case of Stream / Streams was an example of the 
opposite: adding 6 static methods to an interface with ~40 abstract 
methods does not impair the interface's readability  As long as the abstract 
methods outnumbers the static methods the interface is still recognizable 
as an abstraction. 
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Example #2: Factory Methods 

Interestingly, not all static methods related to the Collector interface have 
been placed into the companion class Collectors.  Two (out of ~ 30) 
static methods are defined in the Collector interface, which bears the 
question why they are not located in the Collectors class along with all 
the other static method.   

The reason is that the two static interface methods are very closely related 
to the Collector interface - more closely than the remaining static method 
in class Collectors.  These two static interface methods illustrate what 
might become a Java programming idiom for builders or factories. 

The static methods in interface Collector are two overloaded versions of 
a factory method named of.  As arguments the factory methods receive all 
the parts that a collector consists of, create a new collector from these 
parts, and return it. 

A collector consists of 5 parts: 

 a supplier function that creates a new result container, 

 an accumulator function that incorporates a new data element into a 
result container,  

 a combiner function that combines two result containers into one,  

  a optional finisher function that performs a final transform on the 
result container, and 

 the collector characteristics that provide hints for an implementation 
with better performance. 

The Collector interface has an abstract getter method per part and a 
factory method that takes an argument per part: 
public interface Collector<T, A, R> { 
  Supplier<A>          supplier(); 
  BiConsumer<A, T>     accumulator(); 
  BinaryOperator<A>    combiner(); 
  Function<A, R>       finisher(); 
  Set<Characteristics> characteristics(); 
  … 
  public static<T,A,R> Collector<T,A,R> of( 
    Supplier<A>        supplier, 
    BiConsumer<A, T>   accumulator, 
    BinaryOperator<A>  combiner, 
    Function<A, R>     finisher, 
    Characteristics... characteristics) { 
      return new CollectorImpl<>(supplier,  
                                 accumulator,  
                                 combiner,  
                                 finisher,  
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                                 characteristics); 
  } 
} 
 

There is an additional second version of the factory method with only 
four arguments: it omits the optional finisher part.   

The implementing class CollectorImpl is also closely related. It has five 
instance fields and a constructor with five arguments: 
class CollectorImpl<T, A, R> implements Collector<T, A, R> { 
        private final Supplier<A> supplier; 
        private final BiConsumer<A, T> accumulator; 
        private final BinaryOperator<A> combiner; 
        private final Function<A, R> finisher; 
        private final Set<Characteristics> characteristics; 
 
        CollectorImpl(Supplier<A> supplier, 
                      BiConsumer<A, T> accumulator, 
                      BinaryOperator<A> combiner, 
                      Function<A,R> finisher, 
                      Set<Characteristics> characteristics) { 
            this.supplier = supplier; 
            this.accumulator = accumulator; 
            this.combiner = combiner; 
            this.finisher = finisher; 
            this.characteristics = characteristics; 
        } 
        ... 
        public BiConsumer<A, T> accumulator() { 
            return accumulator; 
        } 
        public Supplier<A> supplier() { 
            return supplier; 
        } 
        public BinaryOperator<A> combiner() { 
            return combiner; 
        } 
        public Function<A, R> finisher() { 
            return finisher; 
        } 
        public Set<Characteristics> characteristics() { 
            return characteristics; 
        } 
    } 
 

There is a second constructor with only four arguments; like the second 
factory method it omits the optional finisher part.  The implementing 
CollectorImpl class is defined as a nested class in the companion class 
Collectors. 

The two static factory methods in interface Collector directly reflect the 
structure of a collector: a collector consists of 5 parts, the interface has 5 
matching getter methods, the static factory method takes 5 corresponding 
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arguments, the implementing class has 5 fields and a constructor with 5 
matching arguments. 

The distinguishing feature of the two static factory methods in interface 
Collector becomes obvious when we compare them to the remaining 
~30 static methods in the companion class Collectors.  Examples of the 
static methods in class Collectors are:  
public static <T> Collector<T,?,List<T>> toList() 
public static <T> Collector<T,?,Set<T>> toSet() 
 

They are factory methods, too, but there is no immediate connection to 
the structure of a collector. 

Conclusion 

As you tell from the examples it is largely a matter of preferences and style 
whether a static method is located in an interface or a class.   In principle 
you can completely eliminate companion classes such as Collections or 
Collectors.  Equally well you can ignore the new feature of static 
interface methods altogether.  What will become common practice 
remains to be seen.  Or, as Brian Goetz put it: " So, while this gives API 
designers one more tool, there don't seem to be obvious hard and fast rules about how to 
use this tool yet, and the simple-minded "all or nothing" candidates are likely to give 
the wrong result. " 11 

 

                                                      

11 See http://mail.openjdk.java.net/pipermail/lambda-dev/2013-
April/009345.html 
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Programming with Lambdas 

Lambda expressions and method/constructor references were added to 
the Java programming language in order to ease the use of  the stream 
API.  Naturally, they can be used independently of  streams.  In the 
following section we want to explore the use of  lambdas in general. 

Programming with lambda expressions and method/constructor 
references has two aspects: usage and design.   

Usage. You can use lambdas for ad-hoc definition of  functionality.  This is 
what they are for.  Typically you will pass these lambdas to operations 
that take functions.  The JDK's collection framework and in particular its 
stream abstraction in package java.util.stream is an example: it has an 
abundance of  operations that take functions as arguments.  These 
operations would be hard to use without lambda expressions and 
method/constructor references.  When you use lambdas you need to 
learn the syntax of  lambda expressions and method/constructor 
references and, of  course, the API to which you intend to supply the 
lambdas. 

Design. An entirely different aspect is the design of  functional APIs. 
When you design an API that others will be using you decide in which 
way it will be used.  Traditional APIs in Java were object-oriented in 
nature and demanded an imperative programming style.  In the future 
you will have the option to design a more functional API in Java that 
encourages a functional programming style.  The JDK's stream API is an 
example, but there are more opportunities for useful functional APIs. 

Using lambdas is easy.  Once you have read the Lambda Tutorial and some 
or all of  this Lambda Reference you will know lambdas well enough to use 
them in conjunction with functional APIs such as the JDK's stream API.  
One piece that is still missing is to familiarize you with the JDK stream.  
If  you want to learn more about the stream API read the Stream Tutorial 
and the Stream Reference.  

In the following sections we want to take a closer look at the design of  
functional APIs - and related complications such as checked exceptions 
and generics.  We will re-visit the Execute-Around-Method pattern 
mentioned in the Lambda Tutorial as the main example of  a functional 
programming idiom.   
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The Execute-Around-Method Pattern  

In the Lambda Tutorial we mentioned the Execute-Around-Method pattern 
as a programming technique for eliminating code duplication. execute-araound-method 

pattern 

The Execute-Around-Method pattern addresses situations where it is 
required that some boilerplate code must be executed both before and 
after a method (or more generally, before and after another piece of code 
that varies).   Often we simply duplicate the boilerplate code via copy-and-
paste and insert the variable functionality manually.  Following the DRY 
(don't repeat yourself) principle you might want to remove the code 
duplication via copy-and-paste.  For this purpose it is necessary to 
separate the boilerplate code from the variable code.  The boilerplate code 
can be expressed as a method and the variable piece of code can be 
passed to this method as the method's argument.  This is an idiom where 
functionality (i.e. the variable piece of code) is passed to a method (i.e. the 
boilerplate code).  The functionality can be conveniently and concisely be 
expressed by means of lambda expressions. 

An example is the use of explicit locks.  An explicit ReentrantLock (from 
package java.util.lock) must be acquired and released before and after a 
critical region of statements.  Hence the boilerplate code looks like this: 
class SomeClass { 
  private ... some data ... 
  private Lock lock = new ReentrantLock(); 
  ... 
  public void someMethod() { 
    lock.lock(); 
    try { 
       ... critical region ... 
    } finally { 
       lock.unlock(); 
    } 
  } 
} 
 

In all places where we need to acquire and release the lock the same 
boilerplate code of "lock-try-finally-unlock" appears. Following the 
Execute-Around-Method pattern we factor out the boilerplate code into a 
helper method: 
class Utilities { 
  public static void withLock(Lock lock, CriticalRegion cr) { 
    lock.lock(); 
    try { 
      cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
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  } 
} 
 

The helper method withLock takes the variable code as a method 
argument of type CriticalRegion: 
  @FunctionalInterface  
  public interface CriticalRegion { 
    void apply(); 
  } 
 

The interface CriticalRegion is a functional interface and hence a lambda 
expression can be used to provide an implementation of the 
CriticalRegion interface.   

Now we want to use the withLock utility to get rid of code duplication in 
the implementation of a Stack class.  Here is a piece of code from a Stack 
class's implementation that uses the helper method withLock: 
private class Stack<T> { 
  private Lock lock = new ReentrantLock(); 
  @SuppressWarnings("unchecked") 
  private T[] array = (T[])new Object[16]; 
  private int sp = -1; 
 
  public void push(T e) { 
    withLock(lock, () -> { 
      if (++sp >= array.length) 
        resize(); 
      array[sp] = e; 
    }); 
  } 
 
  ... 
} 
 

The boilerplate code is reduced to invocation of the withLock helper 
method and the critical region is provided as a lambda expression.  While 
the suggested withLock method indeed aids elimination of code 
duplication it is by no means sufficient as a multi-purpose utility.  There 
are several open issues. What if ... 

 the critical region needs access to data from its enclosing context, 
perhaps even mutating access, or 

 the critical region returns a value, or 

 the critical region throws exceptions, perhaps even checked 
exceptions. 
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Data Access 

Access to the enclosing scope's data is usually not a problem.  Lambdas 
can have bindings to outer scope variables as long as the variables are 
effectively final.  Plus, lambdas have unrestricted access to the enclosing 
class's fields.  The code snippet above already demonstrates the data 
access.   
private class Stack<T> { 
  private Lock lock = new ReentrantLock(); 
  @SuppressWarnings("unchecked") 
  private T[] array = (T[])new Object[16]; 
  private int sp = -1; 
 
  public void push(T e) { 
    withLock(lock, () -> { 
      if (++sp >= array.length) 
        resize(); 
      array[sp] = e; 
    } ); 
  } 
 
  ... 
} 
 

The lambda expression reads the enclosing push method's argument e.  It 
also modifies the enclosing Stack class's fields sp and array. 
return types in functional API design 

Return Value 

The return value is a little more difficult to handle.  For instance, the 
Stack class's pop method has a return value, but our withLock utility does 
not accept critical regions that return a value.  In order to allow for 
lambda expressions with a return type different from void we can use an 
additional CriticalRegion interface with an apply method that returns a 
result.  This way we end up with two interfaces: 
  @FunctionalInterface  
  public interface VoidCriticalRegion { 
    void apply(); 
  } 
  @FunctionalInterface  
  public interface GenericCriticalRegion<R> { 
    R apply(); 
  } 
 

Inevitably, we also need an additional helper method. 
class Utilities { 
  public static  
  void withLock(Lock lock,VoidCriticalRegion cr) { 
    lock.lock(); 
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    try { 
      cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
  } 
  public static <R> R withLock 
  (Lock lock, GenericCriticalRegion<? extends R> cr) { 
    lock.lock(); 
    try { 
      return cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 
 

Given the additional helper method and functional interface the pop 
method can be implemented like this: 
private class Stack<T> { 
 
  ... 
 
  public T pop() { 
   return withLock(lock, () -> { 
      if (sp < 0) 
        throw new NoSuchElementException();  
      else 
        return array[sp--]; 
     }); 
  } 
} 
 

Note, that we now have two functional interfaces for the critical region 
and two withLock utility methods: one for critical regions with a reference 
return type and one for a void return type.  The additional interface and 
method change the API, but they do not affect its usage.  The user simply 
passes adequate functionality to the withLock utility method and the 
compiler's overload resolution mechanism determines which of the utility 
methods must be invoked. 
primitive types in functional API design 

Primitive Types 

A general purpose withLock utility might need further variants for each of 
the primitive types as return types i.e., an IntCriticalRegion, a 
LongCriticalRegion, a DoubleCriticalRegion, etc.  Naturally, we need 
corresponding withLock helper methods, so that we end up with many 
more functional interfaces and helper methods.  Unfortunately, this 
drastically increases the opportunity for ambiguities.   
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Here is an example: 
  @FunctionalInterface  
  public interface VoidCriticalRegion { 
    void apply(); 
  } 
  @FunctionalInterface  
  public interface GenericCriticalRegion<R> { 
    R apply(); 
  } 
  @FunctionalInterface  
  public interface IntCriticalRegion { 
    int apply(); 
  } 
 

Inevitably, we also need additional helper methods. 
class Utilities { 
  public static  
  void withLock(Lock lock,VoidCriticalRegion cr) { 
    lock.lock(); 
    try { 
      cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
  } 
  public static  
  <R> R withLock 
  (Lock lock, GenericCriticalRegion<? extends R> cr) { 
    lock.lock(); 
    try { 
      return cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
  } 
  public static  
  int withLock(Lock lock, IntCriticalRegion cr) { 
    lock.lock(); 
    try { 
      return cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 
 

A class for a stack of primitive type int values would look like this: 
public class IntStack { 
        private Lock lock = new ReentrantLock(); 
        private int[] array = new int[16]; 
        private int sp = -1; 
        ... 
        public void push(int e) { 
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            withLock(lock, () -> { 
                if (++sp >= array.length) 
                    resize(); 
                array[sp] = e; 
            }); 
        } 
        public int pop() { 
            return withLock(lock, (IntCriticalRegion) () -> { 
                if (sp < 0) 
                    throw new NoSuchElementException(); 
                else 
                    return (array[sp--]); 
            }); 
        } 
} 
 

Note the ugly cast in the pop method.  It is needed because the compiler 
yields an error message without it; it cannot figure out whether we are 
asking for the withLock version with a GenericCriticalRegion<Integer> 
and or with a IntCriticalRegion.  Hence the cast is mandatory - which 
almost defeats the purpose of using the withLock utility in the first place. 

We can get rid of the cast by discarding the primitive type versions of the 
CriticalRegion interface and the related overloads of the withLock 
method.  It reduces the number of overloaded methods and thereby the 
chance for ambiguity.  In return, we would have to accept the overhead of 
boxing and unboxing, and can hope that the compiler's optimization 
strategy might eliminate the overhead. 

The point to take home is that additional functional interfaces for the 
primitive types might look attractive because they eliminate the 
boxing/unboxing overhead.  At the same time they increase the risk of 
overload resolution failure at compile-time and might not be worth the 
trouble they cause.  

Unchecked Exceptions 

Critical regions that throw unchecked exception do not need any 
particular attention because unchecked exceptions need not be listed in 
throws clauses, neither in the functional interface nor in the utility 
method.  

The pop method for instance throws an unchecked exception: 
private class Stack<T> { 
 
  ... 
 
  public T pop() { 
   return withLock(lock, () -> { 
      if (sp < 0) 
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        throw new NoSuchElementException();  
      else 
        return array[sp--]; 
     }); 
  } 
} 
 

This works although neither the critical region's apply method nor the 
withLock utility method have a throws clause. 
checked exceptions in functional API design 

Checked Exceptions 

The situation is different if the critical region throws checked exceptions.  
For illustration let us modify the pop method so that it throws a checked 
exception if the stack is empty.  
public class Stack<T> { 
  … 
  public static class EmptyStackException extends Exception {} 
 
  public T pop() throws EmptyStackException { 
    return withLock(lock, () -> { 
      if (sp < 0) 
        throw new EmptyStackException(); 
      else 
        return (array[sp--]); 
    }); 
  } 
} 
 

How do we cope with critical regions that do throw checked exceptions?   
So far, this does not compile because neither the critical region's apply 
method nor the withLock utility method are allowed to raise checked 
exceptions.  

In principle there are several strategies for solving the problem: 

 Exception Tunnelling. We wrap all checked exceptions into unchecked 
exception and unwrap them later.  This way we need not add throws 
clauses the functional interface or the utility method. 

 Adding Throws Clauses.  We generify the the functional interface or the 
utility method by adding a type variable for the exception type. 

Exception Tunnelling exception tunnellling 

One technique is wrapping all checked exceptions into unchecked 
exception and unwrapping them later.   

Here is an example: 
public T pop() throws EmptyStackException { 
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  try { 
    return withLock(lock, () -> { 
      try { 
        if (sp < 0) 
          throw new EmptyStackException(); 
        else 
          return (array[sp--]); 
      } catch (Exception e) { 
         throw new RuntimeException(e); 
      } 
    }); 
  } catch (final RuntimeException re) { 
    Throwable cause = re.getCause(); 
    if (cause instanceof EmptyStackException) 
      throw ((EmptyStackException) cause); 
    else 
      throw re; 
  } 
} 
 

The critical region lambda throws a checked EmptyStackException, which 
the functional interface's apply method does not permit.  As a work-
around the EmptyStackException is wrapped in to a runtime exception.  
The downside of this tunnelling technique is that the receiving code must 
catch the runtime exception, unwrap it and thereby restore the original 
checked exception.   

Adding Throws Clauses 

An alternative would involve additional helper methods and functional 
interfaces that have appropriate throws clauses.  In order to avoid the 
exception tunnelling for the pop method from the example above we need 
to change the critical region interface and the withLock utility as follows: 
@FunctionalInterface  
public interface CriticalRegion<R> { 
    R apply() throws EmptyStackException; 
} 
 
public static  
<R> R withLock(Lock lock, GenericCriticalRegion<? extends R> cr)  
throws EmptyStackException { 
  lock.lock(); 
  try { 
    return cr.apply(); 
  } finally { 
    lock.unlock(); 
  } 
} 
 

This simplifies the user code substantially because there is no need for exception 
wrapping and unwrapping anymore: 
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public T pop() throws EmptyStackException { 
  return withLock(lock, () -> { 
    if (sp < 0) 
      throw new EmptyStackException(); 
    else 
      return (array[sp--]); 
  }); 
} 
 

The downside is that we need one additional pair of helper method and 
functional interface per variation of the throws clause.  The solution 
strategy demonstrated above can be generalized by means of generics:  we 
can add a type parameter for the exception type. 

With a type parameter for the exception type the helper method and 
functional interface look like this: 
@FunctionalInterface  
public interface CriticalRegion<R, E extends Exception> { 
    R apply() throws E; 
} 
 
public static <R, E extends Exception> R withLock 
  (Lock lock, GenericCriticalRegion<? extends R, ? extends E> cr)  
  throws E { 
    lock.lock(); 
    try { 
      return cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
} 
 

The user code, e.g. the stack's pop method, is not affected at all and we 
can now use the generic withLock utility method for all critical regions 
with a checked exception regardless of the exact exception type.  

Unfortunately, the generic throws clause does not help if the critical 
region throws more than one exception type.  For illustration we change the 
push method so that it throws two types of exceptions: 
public class Stack<T> { 
  … 
  public static class SizeLimitExceededException  
    extends Exception {} 
  public static class IllegalElementException  
    extends Exception {} 
 
  public void push(T e)                                  // error 
    throws SizeLimitExceededException, IllegalElementException { 
      withLock(lock, () -> { 
        if (++sp >= array.length) 
          throw new SizeLimitExceededException(); 
        if (e == null) 
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          throw new IllegalElementException(); 
        array[sp] = e; 
    }); 
  } 
} 
 

The compiler now complains about an unreported exception of type 
Exception raised by the lambda expression.  This is because the compiler 
deduces that the lambda expression throws an Exception (which is the 
common supertype of two actually raised exceptions 
SizeLimitExceededException and IllegalElementException).  For this 
reason the push method is required to take care of the Exception by either 
catching or declaring it in its throws clause.  Neither is desirable; we do 
not want to change the push method. 

As a solution we could consider defining yet another pair of functional 
interface and utility method with two type variables for two different 
exception types (and so on and so forth for situations with 3, 4, 5, or 
more exception types).  The unfortunate part is that we cannot even 
overload on exception clauses of different length. 

Let us try to provide the additional functional interface in order to 
illustrate the dilemma: 
@FunctionalInterface  
public interface VoidCriticalRegion<E extends Exception> { 
  void apply() throws E; 
} 
@FunctionalInterface                                     // error 
public interface VoidCriticalRegion<E1 extends Exception, 
                                    E2 extends Exception> { 
  void apply() throws E1, E2; 
} 
 

The compiler immediately complains that the two interfaces have the 
same erasure and rejects our attempt to provide a second functional 
interface with the same name.  Naturally, we can choose a different name. 
e.g. VoidCriticalRegion_2.  We also need to provide a corresponding 
utility method: 
@FunctionalInterface  
public interface VoidCriticalRegion<E extends Exception> { 
  void apply() throws E; 
} 
@FunctionalInterface  
public interface VoidCriticalRegion_2<E1 extends Exception, 
                                      E2 extends Exception> { 
  void apply() throws E1, E2; 
} 
 
public static <E extends Exception>  
void withLock 



158 Programming with Lambdas 

 

(Lock lock, VoidCriticalRegion<? extends E> cr)  
throws E { 
    lock.lock(); 
    try { 
      cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
} 
public static <E1 extends Exception, E2 extends Exception> 
void withLock 
(Lock lock, VoidCriticalRegion_2<? extends E1, ? extends E2> cr) 
throws E1, E2 { 
    lock.lock(); 
    try { 
      cr.apply(); 
    } finally { 
      lock.unlock(); 
    } 
} 
 

So far, it compiles.  But, when we invoke the overloaded withLock 
method then the compiler runs into overload resolution problems and 
reports ambiguities.  Here is what happens: 
public void push(T e)  
throws SizeLimitExceededException, IllegalElementException { 
  withLock(lock, () -> {                                 // error 
    if (++sp >= array.length) 
          throw new SizeLimitExceededException(); 
    if (e == null) 
          throw new IllegalElementException(); 
    array[sp] = e; 
  }); 
} 
 

The compiler finds both withLock methods, considers both viable, and 
reports an ambuity.  We can now rename the second withLock method to 
withLock_2 (or withLockForCriticalRegionsWithTwoExceptionTypes).  
Whatever we try, ultimately coping with checked exceptions in design of 
functional APIs is ugly and quite a mess.   

Exception Transparency exception transparency 

To address this mess, a compiler strategy called exception transparency was 
discussed.  Exception transparency means that the compiler automatically 
infers the throws clauses of methods like withLock  in our example. 

This kind of compiler support would eliminate the need for countless 
variations of the helper method and the functional interface.  For the time 
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being the language designers decided against exception transparency.  The 
feature may still be added to the language is a future release of Java.12   

For Java 8 it means that tunnelling is the technique of choice in order to 
cope with checked exceptions.   

Checked Exception in Functional APIs of the JDK 

Note, that the complications with checked exception are not limited to 
our example.  The JDK streams and their bulk operation struggle with the 
same issue.  All the functional interfaces that are used in conjunction with 
forEach, filter, map, reduce, etc. do not allow checked exceptions.  In 
practice, wrapping checked exceptions into runtime exceptions is the 
norm. 

The lines method in class java.io.BufferedReader illustrates this.  It 
returns a Stream<String> polulated with the lines read from a 
BufferedReader.  Accessing the underlying BufferedReader may cause a 
checked IOException. As stream operations cannot handle checked 
exceptions the checked IOException is wrapped in an 
UncheckedIOException, whose sole purpose is tunnelling i/o related 
checked exceptions.  
wildcards in functional API design 

Wildcards Instantiations of  Functional Interfaces 

Many functional interfaces are generic.  In the example discussed in the 
previous sections we ended up with a generic functional interface for the 
critical region.  The same can be observed in the JDK.  Just take a look at 
the java.util.function package from the JDK: all functional interfaces 
in this package are generic interfaces. 

Functional interface types are typically used as argument types of 
methods.  In our example we passed the generic CriticalRegion interface 
as an argument to the withLock utility method.  Similarly, the functional 
interfaces such as Function, Consumer, Supplier, etc. from the JDK 
package java.util.function are passed to various methods, e.g. to the 
stream operations defined in interface Stream.   

It turns out that almost always the argument type must be a wildcard 
instantiation of the generic functional interface.  As wildcards are an 
                                                      
12 If you are interested in the considerations regarding exception transparency, here are a 
couple of references: 
https://blogs.oracle.com/briangoetz/entry/exception_transparency_in_java  and 
http://mail.openjdk.java.net/pipermail/lambda-spec-experts/2012-
September/000007.html. 
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aspect of generics that is considered "difficult" by many Java developers 
we take a closer look at the use of functional interfaces and the need for 
wildcard instantiations thereof. 

To demonstrate and explain the need for wildcard instantiation we use a 
simple example: a Filter interface that is passed to the filter method of 
a Sequence. 

Here is the functional interface Filter:  
@FunctionalInterface 
public interface Filter<T> { 
   boolean isGood(T t); 
} 
 

This is the Sequence abstraction with its filter operation (1st approach, 
not yet perfect): 
public class Sequence<T> { 
    private List<T> seq = new ArrayList<>(); 
    private Sequence(List<T> source) { 
        seq = source; 
    } 
    @SafeVarargs 
    public Sequence(T... elems){ 
        seq = Arrays.asList(elems); 
    } 
    public Sequence<T> filter(Filter<T> filter) { 
        List<T> res = new ArrayList<>(); 
        for (T t : seq) 
            if (filter.isGood(t)) 
                res.add(t); 
        return new Sequence<T>(res); 
    } 
    public String toString() { 
        return seq.toString(); 
    } 
} 
 

Here we invoke the filter operation to which we pass the method 
reference Character::isAlphabetic as a filter function: 
Sequence<Character> cs = new Sequence<> 
          ('€','§','4','b','ß','Z','ö',(char)0x007E,(char)0x221E, 
          (char)0x042F,(char)0x2167,(char) 0x2211); 
System.out.println(cs); 
Sequence<Character> rs = cs.filter(Character::isAlphabetic); 
System.out.println(rs); 
 

It prints: 

[€, §, 4, b, ß, Z, ö, ~, ∞, Я, Ⅷ, ∑] 
[b, ß, Z, ö, Я, Ⅷ] 
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All is fine so far. If, however, we use the Filter interface in a slightly 
different context it does no longer work: 
public static  
<E> Sequence<E> universalFilter(Sequence<E> s, Filter<Object> f){ 
  return s.filter(f);          // error: incompatible types 
} 
 
System.out.println(universalFilter(cs,o -> o.hashCode()%2!=0)); 
 

In the universalFilter method we intend to use a filter of type 
Filter<Object> that can handle any kind of object.  When we invoke the 
method we pass in such a filter, namely o->o.hashCode()%2!=0.  This filter 
indeed works for all reference types.  One would expect that it should also 
work for the elements of unknown type E in the Sequence<E> that we pass 
to the universalFilter method along with the Filter<Object>. 

Yet the compiler complains.  It reports that Filter<Object> cannot be 
converted to Filter<E>, which is correct.  E might be a type different 
from Object, which means that the two filter types Filter<E> and 
Filter<Object> are indeed incompatible types.  

The problem is that the filter method in class Sequence<T> requires an 
argument of type Filter<T>, which is too restrictive.  It prohibits the use 
of the perfectly reasonable universal filter of type Filter<Object>.   

The correct signature of the filter method must look like this (2nd 
approach, much better): 
public class Sequence<T> { 
    ... 
    public Sequence<T> filter(Filter<? super T> filter) { 
        List<T> res = new ArrayList<>(); 
        for (T t : seq) 
            if (filter.isGood(t)) 
                res.add(t); 
        return new Sequence<T>(res); 
    } 
    ... 
} 
 

The filter method must allow parameterizations of the Filter interface 
for supertype of the sequence's element type T rather than demanding a 
filter of type Filter<T>.  With this correction the sample code compiles 
and runs and prints: 

[§, ß, Я, Ⅷ, ∑] 
 

 

Here is an additional example.  Say, we have a functional interface Mapper: 
@FunctionalInterface 



162 Programming with Lambdas 

 

public interface Mapper<F,T> { 
    T mapTo(F from); 
} 
 

It is used by the Sequence's map operation (1st approach, not yet perfect): 
public class Sequence<T> { 
    private List<T> seq = new ArrayList<>(); 
    private Sequence(List<T> source) { 
        seq = source; 
    } 
    … 
    public <X> Sequence<X> map(Mapper<T,X> mapper) { 
        List<X> buf = new ArrayList<>(); 
        for (T t : seq) 
            buf.add(mapper.mapTo(t)); 
        return new Sequence<>(buf); 
    } 
} 
 

We can use the map operation like this: 
Sequence<Integer> is = new Sequence<>(10,20,30); 
System.out.println(is); 
Sequence<Double> ds = is.map(i->i/2.0); 
System.out.println(ds); 
 

It compiles and runs and prints: 
[10, 20, 30] 
[5.0, 10.0, 15.0] 
 

Now imagine we have a universal mapper that can map any type of object 
to a character: 
Mapper<Object,Character> mapper = o -> o.toString().charAt(0); 
 

We want to use this mapper to map a sequence of integers to a sequence 
of characters like this: 
Sequence<Character> os = is.map(mapper);  // error: type mismatch 
 

The compiler complains because the map operation of a 
Sequence<Integer> is declared to take a mapper of type 
Mapper<Integer,…>, i.e. a mapper that take integers and maps them to 
something.  We want to use a mapper of type Mapper<Object,…> that takes 
any kind of object (and in particular integers) and maps them to 
something.  Our more universal mapper is perfectly reasonalbe; it is the 
map method that is too restrictive.   

The signature of the map method can be relaxed like this (2nd approach, 
somewhat improved): 
public class Sequence<T> { 
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    … 
    public <X> Sequence<X> map(Mapper<? super T,X> mapper) { 
        List<X> buf = new ArrayList<>(); 
        for (T t : seq) 
            buf.add(mapper.mapTo(t)); 
        return new Sequence<>(buf); 
    } 
} 
 

Our attempt to map a sequence of integers to a sequence of characters 
with a mapper of type Mapper<Object,Character> now compiles and runs: 
Mapper<Object,Character> mapper = o -> o.toString().charAt(0); 
Sequence<Character> os = is.map(mapper);              // now fine 
 

If we want to use the same mapper to map a sequence of integers to a 
sequence of objects the compiler complains again: 
Mapper<Object,Character> mapper = o -> o.toString().charAt(0); 
Sequence<Object> os = is.map(mapper);     // error: type mismatch 
 

This time it is return type that causes the trouble.  If the map operation 
receives a mapper of type Mapper<…,Character> then it returns a 
Sequence<Character>.  We, instead, expect a Sequence<Object>.  
Obviously, a sequence of objects can store the results of any mapping and 
in particular the characters that are produced by our mapper of type 
Mapper<…, Character>.   Again, it is the map method that is too restrictive.   

Here is the final correction of the map method (3rd approach, maximally 
relaxed): 
public class Sequence<T> { 
    … 
    public <X> Sequence<X>  
    map(Mapper<? super T,? extends X> mapper) { 
        List<X> buf = new ArrayList<>(); 
        for (T t : seq) 
            buf.add(mapper.mapTo(t)); 
        return new Sequence<>(buf); 
    } 
} 
 

Our attempt to store the result of the mapping to a sequence of objects 
now compiles and runs: 
Mapper<Object,Character> mapper = o -> o.toString().charAt(0); 
Sequence<Object> os = is.map(mapper);                 // now fine 
 

The admittedly contrived example demonstrates a common situation in 
functional API design. Many of the functional interfaces are generic 
interfaces.  The operations that take implementations of these generic 
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functional interfaces must often declare wildcard parameterizations of the 
functional interfaces as their argument types in order to be correct.  13 

                                                      

13 For more information on wildcards see 
http://www.angelikalanger.com/GenericsFAQ/FAQSections/Index.html#W 
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Runtime Representation of Lambda 
Expressions 

In this section we want to explore what lambda expression and 
method/constructor are translated to and how they are serialized.  
runtime representation 

Translation of  Lambda Expressions 

to be done 

Serialization of  Lambda Expressions 

to be done 
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Appendix 

Source Code of  Execute-Around-Method Pattern 
Case Study 

withLock Utility 

 
public class Utilities { 
   @FunctionalInterface 
   public static interface VoidCriticalRegion { 
        void apply(); 
   } 
   public static  
   void withLock(Lock lock, VoidCriticalRegion region) { 
        lock.lock(); 
        try { 
            region.apply(); 
        } finally { 
            lock.unlock(); 
        } 
   } 
   @FunctionalInterface 
   public static interface GenericCriticalRegion<R> { 
        R apply(); 
   } 
   public static  
   <R> R withLock(Lock lock, GenericCriticalRegion<R> region) { 
        lock.lock(); 
        try { 
            return region.apply(); 
        } finally { 
            lock.unlock(); 
        } 
   } 
} 
 

 

Stack Class 

 
public class Stack<T> { 
        private Lock lock = new ReentrantLock(); 
        @SuppressWarnings("unchecked") 
        private T[] array = (T[])new Object[16]; 
        private int sp = -1; 
 
        private void resize() { 
            // todo later - for now throw index out of bounds 
            array[sp] = null; 
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        } 
 
        public void push(T e) { 
            withLock(lock, () -> { 
                if (++sp >= array.length) 
                    resize(); 
 
                array[sp] = e; 
            }); 
        } 
 
        public T pop() { 
            return withLock(lock, () -> { 
                if (sp < 0) 
                    throw new NoSuchElementException(); 
                else 
                    return (array[sp--]); 
            }); 
        } 
} 

 

Experiments with IOException 

 
public class IOSample { 
  private Lock lock = new ReentrantLock(); 
  private IntStack stack = new IntStack(); 
 
  /* 
   *  This uses the VoidCriticalRegion functional interface. 
   */ 
  public void myMethod_1() throws IOException { 
    try { 
      withLock(lock, () -> { 
        try { 
          InputStream is = new FileInputStream("test"); 
          if (is.available() <= 0) 
            stack.push(Integer.MAX_VALUE); 
          else 
            stack.push(Integer.MIN_VALUE); 
          } catch (IOException ioe) { 
            throw new RuntimeException(ioe); 
          } 
      }); 
    } catch (RuntimeException re) { 
      Throwable cause = re.getCause(); 
      if (cause instanceof IOException) 
        throw ((IOException) cause); 
      else 
        throw re; 
    } 
  } 
  /* 
   *  This uses the VoidIOECriticalRegion functional interface. 
   */ 
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  public void myMethod_2() throws IOException { 
    withLockAndIOE(lock, () -> { 
      InputStream is = new FileInputStream("test"); 
      if (is.available() <= 0) 
        stack.push(Integer.MAX_VALUE); 
      else 
        stack.push(Integer.MIN_VALUE); 
    }); 
  } 
} 
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