Java Trends
JDK 1.5

Angelika Langer

Trainer/Consultant

http://www.Angel ikaLanger .com

JDK 1.5

» release announced for end of 2003

» several new featuresin the language and the libraries
— JSR 014 - generics
— JSR 166 - concurrency utilities
— JSR 201 - autoboxing, enum, ...

er & Klaus Kreft. All Rights Reserved.
concurrency utilities (2)

agenda

generics

concurrency utilities
enum types

autoboxing

nger & Klaus Kreft. All Rights Reserve
concurrency utilities (3)

Java Generics

» motivation for adding generic types and methods to
Java
— higher expressiveness and improved type safety
— make type parameters explicit and make type casts implicit

— crucia for using libraries such as collectionsin aflexible, yet
safe way

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (4)

Java generics vs. C++ templates

» Javagenerics are said to be something like C++
templates.
— common misconception

 Javagenerics have nearly nothing in common with C++
templates.
— C++ templatesis a Turing complete language.
— Javagenericsis syntactic sugar that elides some casting.

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (5)

agenda - generics

e overview
language changes. parameterized types and methods
library changes: parameterized collections & extended reflection
related language changes: covariant return types
type variables
— tranglation to bytecode

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (6)

terminology

» parameterized type or method

— class/ interface or method that has type parameters
 typevariable

— placeholder for atype, i.e. the type parameter

class Seq<E> implements List<E> {
static boolean isSeq(Object x) {
return x instanceof Seq;
static <T> boolean isSeq(List<T> x) {
return x instanceof Seq<T>;

¥
static boolean isSegArray(Object x) {
return x instanceof Seql];

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (7)

paramterized types

* instantiations of parameterized types look like C++
templates

o examples:

Vector<String>

Seq<Seq<A>>
Seg<String>.Zipper<Integer>
Collection<integer>
Pair<String,String>

 primitive types cannot be parameters
- Vector<int> isillega

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (8)

benefit of parameterized types

* today: no information available about the type of the
elements contained in a collection

void append(Vector v, char[] suffix) {
for(int 1dx=0; idx<v.size(); ++idx) {
cast might fail StringBuffer buf = (StringBuffer) (v.get(idx));

buf.append(suffix);

y 3

o future: parameterized type provides more information and
performs cast implicitly

void append(Vector<StringBuffer> v, char[] suffix) {
for(int 1dx=0; idx<v.size(); ++idx) {

StringBuffer buf = v.get(idx);
} ks

buf.append(suffix);

ht 2003 by Angelika er & Klaus Kreft. All Right
concurrency utilities (9)

type variables

* definition of a parameterized class
— typevariables T1 and T2 act a parameters

class Pair <Typel,Type2> {
private Typel t1;
private Type2 t2;

b

* type variable can have optional bounds
— abound consist of aclass and/or severd interfaces
— if no bound is provided Object is assumed

class AssociativeArray <Key extends Comparable, Value> {

er & Klaus Kreft. All Rights Reserved.
concurrency utilities (10)

shared type identification

« al instantiations of a parameterized type have the same

runtime type

— type parameters are not maintained at runtime and do not show

up in the byte code

Vector<String> X =
Vector<Integer> y =

return x.getClass()

ger & Klaus Kreft. All Rights Reserved

raw types

new Vector<String>();
new Vector<Integer>();

== y.getClass();

concurrency utilities (ll)

e raw type: parameterized class without its parameters

— variables of araw type can be assigned from values of any of the
type's parametric instances

— reverse assignment permitted to enable interfacing with legacy

code

Vector rawVector =
Vector<string> stringVector =

rawVector =

stringVector

compiler warning:
assignment deprecated

clika Langer & Klaus Kreft. All Rights Reserved

new Vector();
new Vector<String>();

stringVector;

rawVector;

concurrency utilities (12)

raw types

» accessto fields of araw type

class Cell<Type> {

private Type value;

public Cell (Type v) { value=v; }
public Type get() { return value; }
public void set(Type v) { value=v; }

}

Cell rawCell = new Cell<String>("abc™);
- - ... rawCell._value ..._;
fine, value has type Object ... rawCell.get();

compiler warning:

unchecked access to field rawCell .set("'def'"); // deprecated

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (13)

do we really benefit?

void append(Vector<StringBuffer> v, char[] suffix) {
for(int 1dx=0; idx<v.size(); ++idx) {

StringBuffer buf = v.get(idx);

buf._append(suffix);

} }

e raw type can be assigned to instantiated type
— creates compiler warning, but is permitted

Vector files = new Vector();

// Fill with Strings, not StringBuffers 11!
Vector<StringBuffer> tmp = files;
append(tmp, “.txt”);

implicit cast can fail assignment of raw type permitted

clika Langer & Klaus Kreft. All Rights Reserved

concurrency utilities (14)

parameterized methods

» method declarations can have atype parameter section
like classes have

static <Elem> void swap(Elem[] a
Elem temp = a[i]; a[i] = a[j]:; a

<Elem extends Comparable<Elem>> void sort(Elem[] a) {
for (int i = 0; 1 < xs.length; i++)

for (int j = 0; j < i; j++)

} ifT (a[j]-compareTo(a[i]) < 0) <kElem>swap(a, i, j);

* constructors can be parameterized, too

er & Klaus Kreft. All Rights Reserved

concurrency utilities (15)

parameter inference

* no specia syntax for invocation
— type parameters are inferred from arguments and calling context

Integer[] ints;
Strings[] strings;

gwap(ints, 1, 3); /7/ infers Elem := Integer
sort(strings); // infers Elem ;= String

» explicit specification of type parametersis allowed

<Integer>swap(ints, 1, 3);
<String>sort(ints);

concurrency utilities (16)

agenda - generics

e overview
— language changes: parameterized types and methods
— library changes: parameterized collections & extended reflection
— related language changes: covariant return types
— type variables
— tranglation to bytecode

ika Langer & Klaus Kreft. All Rights Reserved

concurrency utilities (17)

parameterized collections

« collections from collection framework are parameterized
» examples:

public interface Set<kE> extends Collection<E> {
public boolean add(E e);

public boolean contains(Object e);

public lterator<E> iterator();

public <T> T[] toArray(T[] a);

}

public class TreeSet<E> extends AbstractSet<E> ...

{
public TreeSet(SortedSet<E> s) ;

public TreeSet(Comparator<EkE> c);

}

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (18)

extended reflection

additional information for parameterized types

in classClass:

public Type getGenericSuperclass()

public Type[] getGenericlnterfaces()

public ClassTypeVariable[] getTypeParameters()

in classMethod and class Constructor:
public Type getGenericReturnType()
public Type[] getGenericParameterTypes()

inclassField:
public Type getGenericType()

anger & Klaus Kreft. All Rights Reserved

concurrency utilities (19)

extended reflection

* new hierarchy of interfaces

Type

ParameterizedType TypeVariable
getActual TypeArguments() getBounds()
getRawClass() getName()

R

MethodTypeVariable ClassTypeVariable
getDeclaringMethod() getDeclaringClassQ

r & Klaus Kreft. All Rights Reserved.

concurrency utilities (20)

10

agenda - generics

e overview
— language changes. parameterized types and methods
— library changes: parameterized collections & extended reflection
— related language changes: covariant return types
— type variables
— tranglation to bytecode

er & Klaus Kreft. All Rights Reserved

concurrency utilities (21)

covariant return types

 overriding methods may have aresult typethat isa
subtype of the result types of all methods it overrides
— before generics, the result types had to beidentical

class Super implements Cloneable {
Super copy() { return (Super)clone(Q); }

overrides }
class Sub extends Super implements Cloneable {
Sub copy() { return (Sub)clone(); }

® Copyright 2003 by
htt

concurrency utilities (22)

11

no covariant argument types

« overriding methods must still have identical argument
types

class Super implements Cloneable {
Super clone() { --- }
boolean equals(Super s) { ... }

does NOT ks
override class Sub extends Super implements Cloneable {

Sub clone() { --- }
boolean equals(Sub s) { ... }

concurrency utilities (23)

agenda - generics

e overview
language changes: parameterized types and methods
library changes: parameterized collections & extended reflection
related language changes: covariant return types
type variables
— tranglation to bytecode

ika Langer & Klaus Kreft. All Rights Reserved
n

concurrency utilities (24)

12

several bounds

» atype parameter can have more than one bound

class X<T implements SuperClass & Interfacel & Interface2> {

}

e the erasures of all bounds must be pairwise different

class X<T extends Interface<A> & Interface> {

error:
Interface cannot
be inherited
with different
arguments

e if nobound isgiven, object is assumed

anger & Klaus Kreft. All Rights Reserved

concurrency utilities (25)

type variable vs. types

* typevariables are not types

* type variables cannot be used
— in static context
— to create objects
— for type checks viainstanceof
— assupertypes

r & Klaus Kreft. All Rights Reserved.

concurrency utilities (26)

13

type variables & static context

» scope of atype variable = al of the declared class

— including the type parameter section itself
»i.e. type variables can appear as parts of their own bounds
»e.g. <Elem extends Comparable<Elem>> void sort(Elem[] a)

— except any static members or initializers

» no use for static data members

» N0 use in static methods

»interesting effects in conjunction with nested types
class X<T> { class X<T> {

T tl; /lfine T getT1O{...} Il fine
static T t2; /lillega static T getT2(){...} Ilillegal
3}

ika Langer & Klaus Kreft. All Rights Reserved

concurrency utilities (27)

type variables & new expressions

* type variable cannot be used to create objects
— can only declare reference variables

error: unexpected type
class Tuple <Elem> { found: Elem
private Elem pl, p2; required: class

public Tuple(Q {
pl = new Elem(); p2 = new Elem();

public Tuple(Elem al, Elem a2) {
pl = new Elem(al); p2 = new Elem(a2);

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (28)

14

handling reference

» parameterized classes can easily handle references
— but value semantics are difficult

class Tuple <Elem> {
private Elem pl, p2;

public Tuple(Q {
pl = null; p2 = null;

public Tuple(Elem al, Elem a2)

{
pl = al; p2 = a2;

}
public Elem getFirst() {
return pl;

public void setFirst(Elem al) {
pl = al;
}}

ht 2003 by Angelika er & Klaus Kreft. All Right
concurrency utilities (29)

type variables & instanceof

* type variable cannot be used in atype check via
instanceof

error: unexpected type
found: Elem
public class Tuple<kElem> { required: class
private Elem pl, p2;

public <T extends Tuple> Tuple(T other) {
if (other.pl instanceof Elem)
this.pl = (Elem) other.pl;
else
this.pl = null;
. same for p2 ...

E%T

concurrency utilities (30)

ika Langer & Klaus Kreft. All Rights Reserved
n

15

type variables & casting

 typevariable can be used in acast
— might yield awarning
warning:

- unchecked cast to type Elem
public class Tuple<Elem> { U

private Elem pl, p2;

public <T extends Tuple> Tuple(T other) {

try {
this.pl = (Elem) other.pl;

catch (ClassClastException e) {
this.pl = null;

. same for p2 ...

er & Klaus Kreft. All Right

concurrency utilities (3 1)

type variables & casting

* cast isnot guaranteed to fail at runtime
— evenif nonsensical

public <T extends Tuple> Tuple(T other) {
try { this.pl = (Elem) other.pl; }
catch (ClassClastException e) { this.pl = null; }

Tuple<String> pairOfAliens =

new Tuple<String>("'Dick", " Doof");

Tuple<Exception> pairOfExceptions =
new Tuple<Exception>(pairOfAliens);

e cast should fail and trigger assignment of null
— instead Strings are stored in tuple of Exceptions

er & Klaus Kreft. All Rights Reserved

concurrency utilities (32)

16

avoid raw types

« alternative implementation of generic constructor
— avoiding raw typesis safer

public class Tuple<Elem> {
private Elem pl, p2;

public <E extends Elem> Tuple(Tuple<Elem> other) {
this.pl = other.pl;
this.p2 = other.p2;

}
b

Tuple<String> pairOfAliens =
new Tuple<String>("Dick", " "Doof""); typesafe;
no cast needed

> will not compile

concurrency utilities (33)

Tuple<Exception> pairOfExceptions =

nger & Klaus Kreft. All Rights Reserved

type variables & subclassing

* type variables cannot be subclassed from

class Outer<TypeVariable> {
private class Inner extends TypeVariable {

}

b error: unexpected type
found: TypeVariable
required: class

e cannot build generic adapters
e Type = Adapted<Type>

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (34)

conclusion

 typevariables are not types

— can only be used as argument and return type of methods or for
reference variables

— are mapped to Object (or their leftmost bound)

* tremendous restrictions on variables of "unknown" type
— stored and treated as Object references
— no type information available

 surprising whenever two type variables are involved
— like type parameters of a generic class and its generic method, or
— type parameters of an outer and an inner class

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (35)

agenda - generics

e overview
language changes: parameterized types and methods
library changes: parameterized collections & extended reflection
related language changes: covariant return types
type variables
— trangdation to bytecode

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (36)

18

translation to bytecode

» generics are trandated to bytecode

— unlike C++ templates, which are instantiated,
i.e. further C++ classes and functions are generated,
which are eventually trandated to executable code

 process of trandation of generics
— erase dl type parameters
— map type variablesto their bounds
— insert casts as needed

er & Klaus Kreft. All Rights Reserved

concurrency utilities (37)

translation of expressions

* casts are inserted where necessary
— accessto field whose type is a type parameter
— invocation of method whose return type is atype parameter

field access example: class Cell<A> {

. i A value;
— erasureof c.value iSObject

— fQ returnsString e
— return statement translated to String f(Cell<String> c) {

}

return (String) c.value; return c.value;

® Copyright 2003 by
htt

concurrency utilities (38)

19

translation of methods

e method T m(T,,..., T,) throws E,, ...
trandated to
— amethod with the same name

— whose return type, argument types, and thrown types are
the erasures of the corresponding typesin the original method

e compile-time error

— if different methods with identical names but different types are
mapped to methods with the same type erasure

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (39)

example - illegal methods

class C<A> {

A id(A x) {...}

class D extends C<String> {

Object Hd(Obiect 20 -3

}

» classD has two methods with the same name and
different signatures, but the same erasure:
Object id(Object)
— member of D
String i1d(String)
— inherited from c<String>
— erasure. Object id(Object)

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (40)

20

bridge methods

» abridge method is generated
— if amethod m of aclass or interface C isinherited in a subclass D

class C<A> {
3 abstract A id(A x);

class D extends C<String> {
} String 1d(String x) { return x; }

istrandated to:

class C {
abstract Object id(Object x);

class D extends C {
String 1d(String x) { return x; }
Object id(Object x) { return id((String)x); }

ht 2003 by Angelika er & Klaus Kreft. All Right
concurrency utilities (41)

example - bridge method

class C<A> {
abstract A next();

}

class D extends C<String> {
String next() { return ""; }

}
istrandated to:

class C { .
abstract Object next(); Note, that the brldge

} method has the same
class D extends C { signature as the

string next;() { return ""; } original method.
Object next,() { return next;(; }

ika Langer & Klaus Kreft. All Rights Reserved
n

concurrency utilities (42)

21

example - covariant return types

e Sametechnique is used for overriding methods with
covariant return types.

class C { C dupQ {-
class D extends C { D dup(Q {-

--3)
--3)

istrandated to:

class C {
3 C dupQ;

class D extends C {
D dupy Of---}
3 C dup,(O{ return dup;Q; }

anger & Klaus Kreft. All Rights Reserved

concurrency utilities (43)

agenda

generics
concurrency utilities
enum types

autoboxing

r & Klaus Kreft. All Rights Reserved.

concurrency utilities (44)

22

problem

Javathreading primitiveslike

 synchronized blocks, and
e Object.wait(), Object.notity()

are

* too low-level for some application, and
« their overall functionality istoo small for others.

er & Klaus Kreft. All Rights Reserved

concurrency utilities (45)

scope

 standardize medium-level concurrency constructs
— simplify application programming
— avoid reinvention (and incompatibilities)
— improve implementation quality and efficiency

 add minimal low-level support
— overcome existing small design problems

— avoid gratuitous incompatibilities with POSIX pthreads and
RTSJ

— Include only constructs ‘easy’ to add to common JVMs

er & Klaus Kreft. All Rights Reserved

concurrency utilities (46)

23

concurrency utilities - overview

locks

condition variables

gueues

synchronizers

executors

atomic variables

timing

concurrent collections
uncaught exception handlers

nger & Klaus Kreft. All Rights Reserved

agenda

locks and semaphores
conditions

queues

synchronizers
executors

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (47)

concurrency utilities (48)

24

interface Lock
» package java.util.concurrent provides a Lock interface:

public interface Lock {

/I lock aquisition
void lock(Q);

void lockInterruptibly() throws InterruptedException;
boolean tryLock();

boolean tryLock(long timeout, TimeUnit granularity)
throws InterruptedException;

/' lock release
public void unlock()

ika Langer & Klaus Kreft. All Rights Reserved

concurrency utilities (49)

class ReentrantLock

= ReentrantLock isaclassthat implements Lock
* provides behavior similar to a mutex associated with
an object

— mutex is acquired and released implicitly
»when passing in and out of a synchronized block
— lock islocked and unlocked explicitly

synchronized(myObject) { myLock. lock()
myLock.unlock()

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (50)

25

class ReentrantLock (cont.)

e upside:
— ReentrantLock overcomes the limitation of
synchronized blocks:
» acquiring and releasing of locks not bound to block boundaries
— e.g. hand-over-hand locking possible
» waiting thread can be interrupted
» waiting thread can timeout

e downside:

— release of aReentrantLock not enforced

»use Finally
— to make sure that unlock() isalso called in case of an exception

anger & Klaus Kreft. All Rights Reserved

concurrency utilities (5 1)

using a lock - example

Lock I = new RentrantLock();
1_lock(Q);
try {

/I access the resource protected by thislock
} catch (...) {

/I ensure consistency before releasing lock
} finally {

1.unlock();
b

r & Klaus Kreft. All Rights Reserved.

concurrency utilities (52)

26

semaphore

conceptually, a semaphore maintains a set of permits

e acquire() blocksif necessary until a permit is available, and
then takes it

release() adds a permit, potentially releasing a blocking
acquirer

the following classes are provided with JSR-166:

< Semaphore

— no guarantees about the order in which threads acquire permits
< FifoSemaphore

— FIFO order in which threads acquire permits

er & Klaus Kreft. All Rights Reserved

concurrency utilities (53)

semaphore (cont.)

semaphores are used to restrict the number of threads that
Can access some resource

Binary Semaphore
» asemaphore that has at most one permit available
* it can serve as amutua exclusive lock

— similar to an instance of ReentrantLock

— but with different lock policy:
» not reentrant

» the lock can be released by other threads
if they have access to the semaphore,

— i.e. semaphores have no ownerhip

er & Klaus Kreft. All Rights Reserved

concurrency utilities (54)

27

read-write locks

JSR-166 provides the following interface:

public interface ReadWriteLock {
Lock readLock();
_Lock writeLock(Q);

classes implementing the interface vary in lock policy:
— preference: reader, writer, fifo, ...
— lock upgrading and downgrading
— ownership of lock (e.g. writer owns, readers not)

er & Klaus Kreft. All Rights Reserved

concurrency utilities (55)

read-write locks (cont.)

* at the moment, details about supported policies and their
combinations are still open

* read-write locks can significantly improve the
performance of abstractions that are mostly read and
rarely mutated

er & Klaus Kreft. All Rights Reserved

concurrency utilities (56)

28

agenda

locks
conditions
gueues
synchronizers
executors

ht 2003 by Angelika er & Klaus Kreft. All Right
concurrency utilities (57)

interface Condition

= java.util.concurrent provides acondition interface:

public interface Condition {
/[waiting
void awaitUninterruptibly(Q);
void await() throws InterruptedException;
void awaitNanos(long t) throws InterruptedException;
void awaituntil(Date d) throws InterruptedException;
Il notifying
void signal(Q);
void signalAll();

offers more flexibility than the Java built-in condition that is
associated with each object

ika Langer & Klaus Kreft. All Rights Reserved
n

concurrency utilities (58)

29

interface Condition (cont.)

» advantage of Conditionsover Java built-in conditions
associated with each object:

— flexible wait policy

— more than one condition associated with one lock

» allows more expressive implementations
— i.e. closer to the logical solution
» solves "nested monitor problem” in a convenient way

» allows a programming style closer to POSIX pthreads

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (59)

how to obtain a condition

= Lock interface provides a method:
Condition newCondition()
— creates condition bound to respective lock instance

* lockshave autility class Locks
— contains static hel per methods
— (similar to Collections, Arrays, €fC.)
« oneof thehelpersis:
Condition newConditionFor(Object o)
— creates condition bound to built-in mutex associated with object o

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (60)

30

nested monitor problem

* Dbuilt-in conditions are tied to objects

— every object has a mutex and a condition that uses the mutex
» mutex isimplicitly used when methods/blocks are declared synchronized
» condition isimplicitly used when wait() / notify() areinvoked

* intuitive approach for several logical conditions:
— useahbuilt-in condition for each logical condition
— leadsto "nested monitor problem"

ht 2003 by Angelika er & Klaus Kreft. All Right
concurrency utilities (61)

several logical conditions - example

public class blocking_int_stack {

6ublic synchronized void push(int element) {
while (cnt == array.length){
try { waitQ; }

3 catch (InterruptedeException e) { ... }

array[cnt++] = element;
AL
}

public synchronized int pop() {
while (cnt == 0) {

try { waitQ; }
catch (InterruptedeException e) { ... }

}
notifyAll();

return (array[--cnt]);

concurrency utilities (62)

31

mechanics of wait / notify

mutex = condition =
thread 1 monitor lock some obj ect
pop()
) acquire mutex
acquire
mutex
wait on condition; ———>
i (implicitly releases mutex)

signal on
condition

release
mutex

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (63)

using several built-in conditions - example

public class blocking_int_stack {
private Object fullCon = new int[1];
private Object emptyCon = new int[1];
public void push(int element) {
synchronized(fullCon) {
synchronized(emptyCon) {
while (cnt == size) {
try { fullCon.wait(Q); }
}catch (InterruptedException e) { ... }

array[cnt++] = element;
emptyCon.notify();

Langer & Klaus Kreft. All Rights Reserved,

concurrency utilities (64)

several built-in conditions - example (cont.)

public class blocking_int_stack {
private Object fullCon = new int[1];
private Object emptyCon = new int[1];

public int pop(Q) {
synchronized(fullCon) {
synchronized(emptyCon) {
while (cnt == 0) {
try { emptyCon.wait(Q); }

catch (InterruptedException e) { ... }
}

int tmp = array[--cnt];
fullCon.notify();
return (tmp);

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (65)

nested monitor problem

fullCon emptyCon
mutex

(ful'l Con)

sync
{ , ful'| Con)
sync
(enpt yCon)

|

full Con.
wai t () sync
enpt yCon)

\

ful | Con.
notify()

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (66)

 problem occurs due to acquisition of two locks
— built-in monitor locks and conditions are not
independent
» both associated with same object
— eliminate problem:
» associate one mutex with both conditions

» possible in general, but not with built-in conditions
» use explicit conditions from java.util .concurrent package

er & Klaus Kreft. All Rights Reserved

concurrency utilities (67)

avoid "nested monitor' with Conditions

use two conditions associated with the one mutex of this

— instead of two object-specific conditions associated with two object-
specific mutexes

public class blocking_int_stack {
private Condition fullCon = Locks.newConditionFor(this);
private Condition emptyCon = Locks.newConditionFor(this);

public synchronized void push(int element) {
while (cnt == size) {
try { fullCon.await(); }
catch (InterruptedException e) { ... }

array[cnt++] = element;
emptyCon.signal();

concurrency utilities (68)

34

avoid "nested monitor"” with Conditions (cont.)

public class blocking_int_stack {
private Condition fullCon = Locks.newConditionFor(this);
private Condition emptyCon = Locks.newConditionFor(this);
public synchronized int pop() {
while (cnt == 0) {
try { emptyCon.await(); }
catch (InterruptedException e) { ... }

ks

int tmp = array[--cnt];
fullCon.signal();
}return (tmp);

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (69)

agenda

locks
conditions
gueues
synchronizers
executors

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (70)

35

blocking queue interface

JSR-166 provides a queue interface:

public interface Queue<E> extends Collection<E> {
/l insertion
boolean add(E e);
boolean offer(E x);
void put(E x);

// removal
E remove();

E pollQ);
E take(Q):;

 added to package java.util.concurrency
* i.e. queues for inter-thread communication

nger & Klaus Kreft. All Rights Reserved.
concurrency utilities (71)

blocking queue implementations

various blocking queues:
— ArrayBlockingQueue, bound, based on afixed-size array
— LinkedBlockingQueue, unbound, based on alinked list

— PriorityBlockingQueue, unbound, arrangesits e ements
like PriorityQueue from java.util

SynchronousQueue, each put must wait for atake and
vice versa

DelayQueue, unbound, elements cannot be taken until
delay time (specified in put) has been elapsed

LinkedQueue, unbound, thread-save but non-blocking

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (72)

36

using blocking queues - example

class Setup {
void main() {

BlockingQueue q = new SomeQueuelmplementation();

Producer p = new Producer(q);
Consumer ¢ = new Consumer(q);
new Thread(p).start();
new Thread(c).start();

nger & Klaus Kreft. All Rights Reserved

using blocking queues - example

class Producer implements Runnable {
private final BlockingQueue queue;

Producer(BlockingQueue q) { queue = q; }

public void run(Q) {

try {
while(true) { queue.put(produce()); }

¥
catch (InterruptedException ex) {}

}

Object produce() { --- }

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (73)

concurrency utilities (74)

37

using blocking queues - example

class Consumer implements Runnable {
private final BlockingQueue queue;

Concumer (BlockingQueue q) { queue = q; }

public void run() {

try {
while(true) { consume(queue.take()); }

¥
catch (InterruptedException ex) {}

}

void consume(Object x) { -.. }

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (75)

agenda

locks
conditions
queues
synchronizers
executors

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (76)

38

synchronizer: Exchanger

class Exchanger provides a synchronization point at which
two threads can exchange information:

public class Exchanger<kE> {

public Object exchange(E x)
throws InterruptedException;

public Object exchange(E x, long t, TimeUnit u)
throws InterruptedException;

ika Langer & Klaus Kreft. All Rights Reserved

concurrency utilities (77)

using exchangers - example

 use an Exchanger to swap buffers between threads
— thread filling the buffer gets a freshly emptied one when it needsiit,
— handing off the filled one to the thread emptying the buffer

class FillAndEmpty {
Exchanger<Buffer> exchanger = new Exchanger();
Buffer initialEmptyBuffer = ... amade-uptype ...;
Buffer initialFullBuffer = ... ;

void start() {

new Thread(new FillingLoop())-start();
new Thread(new EmptyingLoop()).start();

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (78)

39

using exchangers - example

class FillAndEmpty {
Exchanger<Buffer> exchanger = new Exchanger();

class FillingLoop implements Runnable {
public void run(Q) {
Buffer currentBuffer = initialEmptyBuffer;
try {
while (currentBuffer = null) {
addToBuffer(currentBuffer);
if (currentBuffer.full())
currentBuffer = exchanger.exchange(currentBuffer);

}}

catch (InterruptedException ex) { }

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (79)

using exchangers - example

class FillAndEmpty {
Exchanger<Buffer> exchanger = new Exchanger();

class EmptyingLoop implements Runnable {
public void run() {
Buffer currentBuffer = initialFullBuffer;
try {
while (currentBuffer = null) {
takeFromBuffer(currentBuffer);
ifT (currentBuffer._empty())
currentBuffer = exchanger.exchange(currentBuffer);
}}
catch (InterruptedException ex) { }

Langer & Klaus Kreft. All Rights Reserved,

concurrency utilities (80)

40

agenda

locks
conditions
gueues
synchronizers
executors

er & Klaus Kreft. All Rights Reserved

concurrency utilities (8 1)

executor interface

JSR-166 provides an executor interface:

public interface Executor {
void execute(Runnable r);
Future execute(Callable c, Object arg);

}

» an executor is aframework for executing Runnables
— manages queueing and scheduling of tasks

— creation and teardown of threads
— execute in a newly created or an existing thread
— execute sequentially or concurrently

® Copyright 2003 by
htt

concurrency utilities (82)

41

Callable interface

executors use callables:

public interface Callable {
Object call(Object arg) throws Exception;

}

e Callable issimilar to Runnable

— both are designed for classes whose instances are executed by a
thread

— aRunnable does not return a result and cannot throw a checked
exception, but a Callable can

ika Langer & Klaus Kreft. All Rights Reserved

concurrency utilities (83)

Future interface

execution returns a Future:

public interface Future {
boolean isDone();
Object get() throws InterruptedException,
ExecutionException;
Object get(long t, TimeUnit u) throws
InterruptedException, ExecutionException;

* represents the result of an asynchronous
computation
— check if the computation is complete
— retrieve the result of the computation

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (84)

42

agenda

generics
concurrency utilities

enum types

autoboxing

ika Langer & Klaus Kreft. All Rights Reserved

concurrency utilities (85)

enum type

public enum Season { winter, spring, summer, fall }

* designrationae:
— compile-time type safety
— performance comparable to int constants

— type system provides a namespace for each enum type
»you don't have to prefix each constant name

— typesafe constants aren't compiled into clients
»you can add, reorder or remove constants without recompiling clients

— printed values are informative

— enum constants can be used in collections, e.g. as HashMap keys
— you can add arbitrary fields and methods to an enum class

— an enum type can be made to implement arbitrary interfaces.

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (86)

43

superclass Enum

* all enum types are derived from a predefined superclass

public abstract class Enum <T extends Enum<T>>
implements Comparable<T>, Serializable {
public final transient int ordinal ;
public final String name;
protected Enum(String name, int ordinal);

public abstract List<T> family();
public final boolean equals(Object 0);
public final int hashCode();
public String toString();
public final int compareTo(T 0);
protected final Object clone()
throws CloneNotSupportedException;
protected final Object readResolve()
throws ObjectStreamException;

ika Langer & Klaus Kreft. All Rights Reserved

concurrency utilities (87)

synthetic fields

 each enum class has some automatically generated fields:

— an immutable list containing the enum class's values
public static List<thisenumclass> VALUES;
public final List<thisenumclass> family(Q);

— astatic factory returning the enum constant to an enum

identifier
public static <thisenumclass> valueOf(String name);

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (88)

44

additional fields and methods & use in switch

public enum Coin {
penny(1), nickel(5), dime(10), quarter(25);

private final int value;
public Coin(int value) { this.value = value; }
public int value() { return value; }

private enum CoinColor { copper, nickel, silver }

CoinColor color(Coin c) {
if (c == null) throw new NullPointerException();
switch(c) {
case Coin.penny: return CoinColor.copper;
case Coin.nickel: return CoinColor.nickel;
case Coin.dime: return CoinColor.silver;
case Coin.quarter: return CoinColor.silver;

}

throw new AssertionkError('Unknown coin: " + c);

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (89)

methods per enum value

public abstract enum Operation {
plus {double eval(double x, double y) { return
minus {double eval(double x, double y) { return
times {double eval(double x, double y) { return
div {double eval(double x, double y) { return

I/ Perform arithmetic operation represented by this constant
abstract double eval(double x, double y);

void f(double x, double y) {
for (lterator<Operation> i
i_hasNext(Q;) {
Operation op = i.next();
System.out.printIn(x+" "+op+" "+y+" = "+op.eval(X, Y));

= VALUES.iterator(Q);

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (90)

45

agenda

generics

concurrency utilities
enum types

autoboxing

er & Klaus Kreft. All Rights Reserved

concurrency utilities (91)

autoboxing

frequent need to explicitly convert data of primitive
type to reference type
— e.g. adding primitive datato collections
— explicit conversions are verbose and clutter the code
add autoboxing to the language
— dlow automatic conversion of data of primitive type to the
corresponding wrapper type
introduce a new conversion (boxing conversion)
— used as part of assignment and method invocation
no auto-unboxing proposed

— automatic conversion from wrapper type to primitive type not
supported

er & Klaus Kreft. All Rights Reserved

concurrency utilities (92)

46

autoboxing - example

future

Integer i(100);

int j = 0;
autoboxing i=];

void f(lnteger arg)

{--.}
autoboxing f(5) :

future

void g(int arg)
{---}

Integer i(100);

error:
no auto-unboxing

ika Langer & Klaus Kreft. All Rights Reserved

references - generics

Integer i(100);
int j = 0;

i = new Integer(j);

void f(Integer arg)
{---}
f(new Integer(5));

void g(int arg)
{---}

Integer i(100);
g@i.intvalue());

concurrency utilities (93)

JCP: JSR 014 - Adding Generic Typesto Java

http://www.jcp.org/en/jsr/detail?id=14

Draft Specification (April 27, 2001)

http://java.sun.com/aboutJava/communityprocess/review/jsr014/

Prototype compiler for Generics

http://developer. java.sun.com/developer/earlyAccess/

adding_generics/

JCP: JSR 201 - Extending Java with Enumerations,
Autoboxing, Enhanced for loops and Static Import

http://www. jcp.org/en/jsr/detail?id=201

ger & Klaus Kreft. All Rights Reserved

concurrency utilities (94)

47

references - concurrency utilities

JCP: JSR 166 - Concurrency Utilities
http://www._jcp.org/en/jsr/detail?id=166

Concurrency JSR-166 Interest Site

http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

Overview of package util.concurrent Release 1.3.2.

http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/
concurrent/intro.html

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (95)

authors

Angelika Langer
Training & Mentoring

Object-Oriented Software Development in C++ & Java
Munich, Germany
http: /lIwww.AngelikaLanger.com

Klaus Kreft

Siemens Business Services, Munich, Germany
Email: klaus.kreft@siemens.com

nger & Klaus Kreft. All Rights Reserved

concurrency utilities (96)

48

