
1

Angelika Langer
Trainer/Consultant

http://www.AngelikaLanger.com

ANSI C++ANSI C++

Making Your Programs
Exception-Safe

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (2)

Why Exception Handling ?Why Exception Handling ?

! Before exception handling it was
impossible to indicate errors in
constructors, overloaded
operators, and destructors.

– Either they have no return code,
or

– the return code is used for
purposes other than error
reporting, e.g. operator chains.

main()

detects
error

ret
urn

err
cod

e

returnerrcode

2

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (3)

Programming With ExceptionsProgramming With Exceptions

! Use of exceptions pervades
an entire application and
cannot be localized.

– An exception can be
propagated up the call
stack.

– Each exception
"terminates" the
respective current block.

main()

detects
error

thr
ow

catches

handles

terminate

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (4)

Programming With ExceptionsProgramming With Exceptions

! Throwing an exception is easy; writing code that uses a
throwing function is hard.

! Exceptions cannot be ignored.
! We must cope with them when they occur, even if we are not willing

to handle them.
– An exception terminates the current block,
– current operations are aborted before they are finished,
– objects might be left in inconsistent states, and
– acquired local resources might not be released.

3

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (5)

Exceptions cannot be ignored ...Exceptions cannot be ignored ...

class date {

public: date(int d, int m, int y)

:day(d), mon(m), year(y);

friend istream&

operator>>(istream& is, date& d)

{ return (is >> d.day >> d.mon >> d.year); }
};

An exception can leave the date object half-initialized.
– a typical problem when composite resources are manipulated

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (6)

Exceptions cannot be ignored ...Exceptions cannot be ignored ...

template <class T>

void Stack<T>::push(const T& elem)

{ mutex_.acquire();

v_[top_] = elem;

top_++;

mutex_.release();
}

In case of an exception the mutex object would not be released.
– a typical problem with dynamically acquired resources

4

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (7)

Exceptions Everywhere ...Exceptions Everywhere ...

A typical C idiom:
while (*i++ = *j++)

! i and j can be of different iterator types.
! ++ and * operator might be overloaded.
! i and j can be pointing to sequences of different types.
! Assignment can be overloaded for the element type.
! Converting constructors and cast operators can be involved.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (8)

Exceptions Everywhere ...Exceptions Everywhere ...

vector<string> a; deque<char*> b;
vector<string>::iterator i; deque<char*>::iterator j;
i = a.begin(); j = b.begin();

while (*i++ = *j++)

actually is a sequence of functions calls each of which might throw an
exception:

while ((i.operator*(i.operator++()))

.operator=(string
(j.operator*(j.operator++()))))

5

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (9)

Exceptions Everywhere ...Exceptions Everywhere ...

A typical C idiom:
while (*i++ = *j++)

If an exception appears ...
! ... where did it come from?

The order of evaluation of function arguments is unspecified. If an
exception appears ...

! ... what are the current values of a, b, i, and j?

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (10)

AgendaAgenda

!! Resource Acquisition is InitializationResource Acquisition is Initialization
! The auto_ptr template
! Function try Blocks
! Exceptions in Constructors
! Exceptions in Destructors
! Some Guidelines
! Exception Safety Levels

6

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (11)

Resource AcquisitionResource Acquisition

void use_file (const char* filnam)

{ FILE* fil = fopen(filnam,"w");

// use the file fil
fclose(fil);

}

In case of an exception the file would not be closed.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (12)

Resource AcquisitionResource Acquisition

void use_file (const char* filnam)

{ FILE* fil = fopen(filnam,"w");

try {/* use the file fil */}
catch (...)

{ fclose(fil);

throw;
}
fclose(fil);

}

7

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (13)

Resource AcquisitionResource Acquisition

! All exceptions are caught and the file is closed, i.e. the
resource is released, in the catch block.

– Error-prone, because it can get rather complicated if numerous
resources are acquired and released.

! A more elegant solution: Wrap resources into classes, and
use constructors for acquisition and destructors for release.

– Destructors are called even when exceptions appear and this way
release is guaranteed.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (14)

A File Pointer ClassA File Pointer Class

class FilePtr {

private:

FILE* fp_;

public:

FilePtr (const char* filnam, const char* mod)

: fp_(fopen(filnam,mod)) { }

FilePtr (FILE* fp) : fp_(fp) { }

~FilePtr() { fclose(fp_); }
operator FILE*() { fp_; }

};

FilePtr
"file1.txt"

FILE*

8

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (15)

Resource AcquisitionResource Acquisition

void use_file (const char* filnam)

{ FilePtr fil (filnam,"w");

// use the file fil
} // automatically closed via destructor

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (16)

AgendaAgenda

! Resource Acquisition is Intialization
!! The The auto_auto_ptrptr templatetemplate
! Function try Blocks
! Exceptions in Constructors
! Exceptions in Destructors
! Some Guidelines
! Exception Saftey Levels

9

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (17)

Resource AcquisitionResource Acquisition

class Thing { /* ... */ };
void func ()

{ Thing* tp = new Thing;

// ...
delete tp;

}

In case of an exception the Thing would not be deleted.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (18)

The The auto_auto_ptrptr ClassClass

! Use auto_ptr for dynamically allocated, local objects.
! An auto_ptr stores a pointer to an object obtained via

new and deletes that object when it itself is destroyed
(such as when leaving block scope).

An auto_ptr manages an object on the heap.

10

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (19)

Use of Use of auto_auto_ptrptr

class Thing { /* ... */ };
void func ()

{ auto_ptr<Thing> tp(new Thing);

// ...
}

auto_ptr takes care of deleting Thing when leaving the function body
(either on normal return or when an exception appears).

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (20)

The The auto_auto_ptrptr ClassClass

template<class X> class auto_ptr {

private:

X* ptr_;

public: // construct/destroy:
explicit auto_ptr(X* p =0) throw()

: ptr_(p) {}

~auto_ptr() throw() { delete ptr_; }

};

11

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (21)

MisuseMisuse

void foo() {

static Thing t1;

Thing t2;

auto_ptr<Thing> tp1(&t1);

auto_ptr<Thing> tp2(&t2);
}

Misuse:
" auto_ptr does not refer to a heap object.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (22)

The The auto_auto_ptrptr ClassClass

The auto_ptr provides a semantics of strict ownership.
! An auto_ptr owns the object it holds a pointer to.
! Copying an auto_ptr copies the pointer and transfers ownership to

the destination.
! If more than one auto_ptr owns the same object at the same time

the behavior of the program is undefined.

Compare to built-in pointers and smart pointers.

12

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (23)

Transfer of OwnershipTransfer of Ownership

auto_ptr<Thing> tp(new Thing);

auto_ptr<Thing> tp2 = tp;

! After assignment tp2 owns the object, and tp no longer does.
! tp is empty; deleting tp would not delete any Thing object

anymore.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (24)

Transfer of OwnershipTransfer of Ownership

Thing* p = new Thing;

auto_ptr<Thing> tp1(p);

auto_ptr<Thing> tp2(p);

Misuse:
More than one auto_ptr owns the Thing object.

13

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (25)

Using Using auto_auto_ptrptr

Conventional pointer member:

class X {

T* pt_;

public:

X() : pt_(new T) {}

~X(){ delete pt_; }

};

Alternative using auto_ptr:

class X {

auto_ptr<T> apt_;

public:

X() : apt_(new T) {}

~X() {}

};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (26)

Using Using auto_auto_ptrptr

Container of pointers:
vector<T*> v1, v2;

v1 = v2; // copies all pointers from v2 to v1

// i.e. v1 and v2 share ownership of the pointed to
// elements

Don't use auto_ptr with STL containers !!!
vector<auto_ptr<T> > v1, v2;

v1 = v2; // copies all elements from v2 to v1,
// i.e. v2 transfers ownership of all its elements to v1;
// all auto_ptrs in v2 are emtpy after this assignment

14

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (27)

The The auto_auto_ptrptr ClassClass

template<class X> class auto_ptr {

public: // give up ownership:
X* release() throw()

{ X* tmp = ptr_; ptr_ = 0; return tmp; }

public: // copy constructor:
auto_ptr(auto_ptr& a) throw()

{ ptr_(a.release()); }

};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (28)

The The auto_auto_ptrptr ClassClass

template<class X> class auto_ptr {

public: // members:
X* get() const throw() { return ptr_; }

X& operator*() const throw()

{ return *get(); }

X* operator->() const throw()

{ return get(); }

};

15

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (29)

AgendaAgenda

! Resource Acquisition is Initialization
! The auto_ptr template
!! Function Function trytry BlocksBlocks
! Exceptions in Constructors
! Exceptions in Destructors
! Some Guidelines
! Exception Safety Levels

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (30)

Function Function trytry BlocksBlocks

function try block:
void f()

try { /* function body */ }
catch (...)

{ /* exception handler */ }

mostly equivalent to:
void f() {

try { /* function body */ }

catch (...)

{ /* exception handler */ }
}

Flowing off the end of a function-try-block is
equivalent to a return with no value; this results in
undefined behavior in a value-returning function.

16

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (31)

Function Function trytry Blocks on ConstructorsBlocks on Constructors

Note: As usual in a failed constructor, the fully constructed base classes and
members are destroyed. This happens before entering the handler; in the
handler, you cannot access any base classes or members of the object.

! You cannot "handle" the exception and finish building the object.
! You cannot "return" from the handler: When control reaches the end of the

handler, the exception is automatically re-thrown.

X::X(Arg a)

try : mem(0),Base(a)

{ /* constructor body */ }

catch (...)

{ /* exception handler */ }

Catches exceptions from the
constructor body and the
constructor initializer list, i.e.
also from member and base class
initializers.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (32)

Function Function trytry Blocks on ConstructorsBlocks on Constructors

! Are useful for mapping the exception to meet an exception
specification:

class X {
Y y_;

public:
class Error {}; // nested exception class
X::X(const Y& y) throw(X::Error)
try : y_(y)
{ /* constructor body */ }
catch (...) // catches possible exception from Y::Y
{ throw X::Error(); }

}

17

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (33)

Function Function trytry Blocks on DestructorsBlocks on Destructors

Catches exceptions from the destructor body and from destructors of members and
base classes.

! You can "return" from the handler, but
! when control flows off the end of the handler, the exception is automatically re-

thrown.

X::~X()

try { /* destructor body */ }

catch (...)

{ /* exception handler */ }

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (34)

Function Function trytry Block on Block on main()main()

int main()

try { /* body */ }
catch (...)

{ /* exception handler */ }

! Does not catch exceptions thrown by constructors or destructors of
global variables.

18

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (35)

AgendaAgenda

! Resource Acquisition is Initialization
! The auto_ptr template
! Function try Blocks
!! Exceptions in ConstructorsExceptions in Constructors
! Exceptions in Destructors
! Some Guidelines
! Exception Safety Levels

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (36)

Exceptions in Exceptions in newnew ExpressionsExpressions

What happens if X's constructor throws?

X* p1 = new X;
X* p2 = new X[256];

The memory allocated by the operator new() is freed.
No memory leak!

19

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (37)

Exceptions in ConstructorsExceptions in Constructors

Constructors are a special case. If an exception propagates
from an constructor ...

! the partial object that has been constructed so far is
destroyed.

– If the object was allocated with new the memory is deallocated.
! only the destructors of fully constructed subobjects are

called.
– The destructor of the object itself is not called.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (38)

Exceptions in ConstructorsExceptions in Constructors

class X {

S s_; T t_;

public:
X(const S& s, const T& t)

: s_(s), t_(t) // assume exception from copy ctor of T
{}

~X(){}

};

Destructor for t_ is not called, because it was not constructed.
Destructor for s_ is called (fully constructed subobject).
Destructor ~X() is not called.

20

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (39)

Exceptions in ConstructorsExceptions in Constructors

If a resource is obtained directly (not as part of a subobject) a
resource leak can occur.

Only the allocation and construction of subobjects is reverted
in case of an exception.

– No automatic cleanup for already performed initializations.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (40)

Exceptions in ConstructorsExceptions in Constructors

class X {

S* ps_; T* pt_;

public:

X() : ps_(new S), pt_(new T) {}

~X(){ delete pt_; delete ps_; }

};

Assume an exception is thrown from the constructor of T.
Allocation of the temporary T object fails. Memory allocated with new T is

deallocated; ~T() is not called.
The pointers ps_ and pt_ are destroyed.
The construction of X fails; the destructor ~X() is not called.
The object ps_ points to is never deleted.

21

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (41)

Exceptions from a ConstructorExceptions from a Constructor InitializerInitializer ListList

How can we catch exceptions from a constructor initializer list?

X::X() try : ps_(new S), pt_(new T)

{}

catch(...)

{ // problem: don't know what happened
// exception can stem from ctor initializer or function body

}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (42)

Exceptions in ConstructorsExceptions in Constructors

A solution:
! Not ideal; error-prone in case of numerous dynamically acquired

resources.

X::X(){

try {ps_ = new S;}

catch(...)

{ throw; /* do nothing, because no subobject is constructed yet */ }

try {pt_ = new T;}

catch(...)

{ delete ps_; }
}

22

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (43)

Exceptions in ConstructorsExceptions in Constructors

Another solution:
! Initialize pointers to 0, so that you can safely delete them.

X::X() : ps_(0), pt_(0)

{ try { ps_ = new S; pt_ = new T; }

catch (...)

{ delete pt_;

delete ps_; // reverse order
throw;

}
}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (44)

Exceptions in ConstructorsExceptions in Constructors

Yet another solution: Use auto_ptr.

class X {

auto_ptr<S> aps_; auto_ptr<T> apt_;
public:

X() : aps_(new S), apt_(new T) { }

~X() {}
};
Assume an exception is thrown from the constructor of T.
The subobject apt_ is not created and need not be destroyed.
The subobject aps_ is destroyed; the destructor of aps_ destroys the object

aps_ points to.

23

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (45)

RulesRules

! Avoid resource leaks.
! Use "resource acquisition is initialization" for dynamically

acquired resources.
– Wrap resources into a class, acquire in its constructor, and release

in its destructor.
! Use auto_ptr for dynamically allocated memory.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (46)

AgendaAgenda

! Resource Acquisition is Initialization
! The auto_ptr template
! Function try Blocks
! Exceptions in Constructors
!! Exceptions in DestructorsExceptions in Destructors
! Some Guidelines
! Exception Safety Levels

24

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (47)

Destructors and ExceptionsDestructors and Exceptions

A destructor can be called
! as the result of normal exit from a scope, a delete

expression, or an explicit destructor call, or
! during stack unwinding, when the exception handling

mechanism exits a scope containing an object with a
destructor.

– If an exception escapes from a destructor during stack unwinding
::std::terminate() is called.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (48)

Destructors and ExceptionsDestructors and Exceptions

! Do not let exceptions propagate out of a destructor!

X::~X()

try { /* destructor body */ }
catch (...)

{ if (uncaught_exception())

// This is an exception during stack unwinding.
// Handle it! Do not re-throw!

else

// This is harmless. May propagate the exception.
}

25

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (49)

AgendaAgenda

! Resource Acquisition is Initialization
! The auto_ptr template
! Function try Blocks
! Exceptions in Constructors
! Exceptions in Destructors
!! Some GuidelinesSome Guidelines
! Exception Safety Levels

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (50)

RulesRules

! Do not hide exception information from other parts of the
program that might need them.

– Always rethrow the exception caught in a catch-all clause.
– Re-throw a different exception only to provide additional

information.

26

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (51)

Hiding ExceptionsHiding Exceptions

template <class T> class Stack<T> {

public:

struct AllocationError : public bad_alloc

{ size_t stack_size; } // has additional information
Stack& operator=(const Stack(rhs)

{ // ...
try { new_buffer = new T[new_elems]; }
catch(...)

{ throw AllocationError(new_elems); }

// ...
}

};

What's wrong here?What's wrong here?

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (52)

Hiding ExceptionsHiding Exceptions

try { new_buffer = new T[new_elems]; }

catch(...)

{ throw AllocationError(new_elems); }

What if T::T() throws an exception?

A caller's handler that is prepared to handle the constructor exception
does not get a chance to do so, and a handler for the allocation error
might try to solve the wrong problem.

27

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (53)

Hiding ExceptionsHiding Exceptions

A possible solution:

new_buffer = new(nothrow) T[new_elems];

if (new_buffer == 0)

throw AllocationError(new_elems);

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (54)

RulesRules

Ideally, leave your object in the state it had when the function
was entered.

– Catch exceptions and restore the initial state.

28

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (55)

A A StackStack ClassClass

template<class T> class Stack {

size_t nelems_;

size_t top_;

T* v_;

public:

size_t count() const { return top_; }

void push(T);

T pop();

Stack();

~Stack();

Stack(const Stack&);

Stack& operator=(const Stack&);
};

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (56)

Possible Exception SitesPossible Exception Sites

template <class T>

T Stack<T>::pop()

{

if(top_==0)

throw "pop on empty stack";

// stack has not yet been modified
// ok; nothing evil can happen here

return v_[--top_];
}

29

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (57)

Possible Exception SitesPossible Exception Sites

template <class T> T Stack<T>::pop()

{ if(top_==0) throw "pop on empty stack";

return v_[--top_]; // >>// >>
// size_t decrement and array subscript- ok
// return statement creates copy of element of type T
// copy constructor of T - can fail

// definitely a problem here!
}

$ Decrement happens before copy construction of return value.
$ The stack object is modified although the pop() operation fails.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (58)

Preserve the object statePreserve the object state

template <class T> T Stack<T>::pop()
{ if (top_==0)

throw "pop on empty stack";

try { return v_[--top_]; }

catch(...)

{ // restore original state
top_++;

throw;

}

}

30

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (59)

RulesRules

! Do not catch any exceptions if you do not know how to
handle them.

! Avoid catch clauses.
– Rewrite functions to preserve state instead of adding catch clauses.

! If you cannot ignore propagated exceptions, use a catch-all
clause.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (60)

Statement RearrangementStatement Rearrangement

Typical C++ code corrupts object state if assignment fails:
array[i++] = element; // >>// >>

Exception handling is expensive. Don't do this:
try { array[i++] = element; } // >>// >>
catch(...) { i--; throw; }

Rewrite to:
array[i] = element; // >>// >>
i++;

31

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (61)

RulesRules

Keep your objects destructible.
– Do not leave dangling pointer in your objects.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (62)

The The StackStack AssignmentAssignment

template <class T>

Stack<T>& operator=(const Stack<T>& s)

{

if(&s == this) return *this;

delete[] v_;

v_ = new T[nelems_ = s.nelems_];

for (top_=0;top_<s.top_;top_++)
v_[top_] = s.v_[top_];

return *this;

}

32

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (63)

Possible Exception SitesPossible Exception Sites

template <class T>

Stack<T>& operator=(const Stack<T>& s)
{

if(&s == this) return *this;

// pointer comparison and pointer copying for return - ok

delete[] v_;

// destruction of elements of type T, i.e. T::~T() is called
// ok; if we assume that destructors do not throw
// deallocation of heap memory - ok

...
}

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (64)

Possible Exception SitesPossible Exception Sites

template <class T>

Stack<T>& operator=(const Stack<T>& s)
{...
delete[] v_;

v_ = new T[nelems_ = s.nelems_]; // >>// >>
// allocation and construction - can fail!
...

}
$ Old array deleted; allocation of new array fails.
$ Pointer v_ is left dangling.
$ The Stack destructor will try to delete v_ => disaster!
$ The Stack object is not even destructible any more!

33

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (65)

Keep Keep StackStack destructibledestructible

delete[] v_;

v_ = new T[nelems_ = s.nelems_]; // >>// >>
// Pointer v_ is left dangling. The Stack object is not even destructible any more!

Rewrite to:

delete[] v_;

v_ = 0; // The Stack destructor can safely delete v_ .
v_ = new T[nelems_ = s.nelems_]; // >>// >>

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (66)

RulesRules

Leave valid NIL objects if you can't preserve the original state.
– Set object state to NIL before a critical operation and set to final value

afterwards, i.e. only in case of success.

Perform critical operations through temporaries.
– Modify the object only after successful completion.

34

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (67)

Possible Exception SitesPossible Exception Sites

template <class T>
Stack<T>& operator=(const Stack<T>& s)
{...
delete[] v_; v_ = 0;

v_ = new T[nelems_ = s.nelems_]; // >>// >>
for (top_=0;top_<s.top_;top_++)

v_[top_] = s.v_[top_]; // >>// >>
// assignment operator for type T - can fail!

...
}
$ Stack object is invalid because copy has been done only partially.
$ Since the old Stack data is already deleted, we cannot leave the Stack in its

original state.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (68)

Leave Leave StackStack in a valid NIL statein a valid NIL state

A solution: Define a NIL object, which represents a valid, but not usable
value. (NULL pointer, zero-size string, emtpy stack)

delete[] v_; v_ = 0;

v_ = new T[s.nelems_]; // >>// >>
top_=0; nelems_=0;

for (size_t i=0;i<s.top_;i++)

v_[i] = s.v_[i]; // >>// >>
nelems_ = s.nelems_; top_ = s.top_;

// Stack object is NIL, i.e. empty, if copy fails.

35

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (69)

Leave Leave StackStack untoucheduntouched

Another solution: Use temporaries and modify the original only after successful
completion.

new_buffer = new T[s.nelems_]; // >>// >>
for (size_t i=0;i<s.top_;i++)

new_buffer[i] = s.v_[i]; // >>// >>
swap(v_,new_buffer); delete [] new_buffer;

nelems_ = s.nelems_; top_ = s.top_;

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (70)

RulesRules

! Avoid resource leaks.
– Use auto pointers.
– Implement an auto array pointer that holds a pointer to an array of

elements.

36

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (71)

Eliminate Resource LeakEliminate Resource Leak

new_buffer = new T[s.nelems_]; // >>// >>
for (size_t i=0;i<s.top_;i++)

new_buffer[i] = s.v_[i]; // >>// >>
swap(v_,new_buffer);

delete [] new_buffer;

nelems_ = s.nelems_; top_ = s.top_;

What's wrong now?What's wrong now?

The memory allocated for new_buffer is not deallocated.
=> resource leak!

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (72)

An An auto_array_auto_array_ptrptr ClassClass

template <class X> class auto_array_ptr {

X* p_;

public:
explicit auto_array_ptr(X* p=0) throw()

: p_(p) {}

auto_array_ptr(auto_array_ptr<X>& ap) throw()

: p_(ap.release()) {}

~auto_array_ptr() { delete[] p_;delete[] p_; }
void operator=(auto_array_ptr<X>& rhs)

{ if(&rhs!=this) reset(rhs.release()); }
// ...

};

37

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (73)

Use auto array pointerUse auto array pointer

auto_array_ptr<T>

new_buffer(new T[s.nelems_]); // >>// >>
for (size_t i=0;i<s.top_;i++)

new_buffer[i] = s.v_[i]; // >>// >>
v_ = new_buffer.swap(v_);

nelems_ = s.nelems_; top_ = s.top_;

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (74)

Striving for ExceptionStriving for Exception--SafetySafety

! Identify all statements where an exception can appear.
! Identify all problems that can occur in presence of an

exception. On exit from the function:
– Is the object still unchanged?
– Is it still in a valid, consistent state?
– Is it still destructible?
– Are there any resource leaks?

38

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (75)

AgendaAgenda

! Resource Acquisition is Initialization
! The auto_ptr template
! Function try Blocks
! Exceptions in Constructors
! Exceptions in Destructors
! Some Guidelines
!! Exception Safety LevelsException Safety Levels

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (76)

Exception SafetyException Safety

A user of a function is interested in the guarantees the function
can give when exceptions are propagated.

Document not only the pre- and post conditions and the
"normal" effect of a function, but also its exception safety
guarantees.

39

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (77)

Exception Safety GuaranteesException Safety Guarantees

Level 0: No guarantee.
Part of the data the function tried to modify might be lost or corrupted. Access
to the data might cause a program crash.

Level 1: Destructibility.
Part of the data might be lost or in an inconsistent state. It is not possible to
safely to access to the data. However, it is guaranteed that the data can be
destroyed.

Level 2: No resource leaks.
All objects that the function modifies have their destructors called, either
when f() handles the exception or when those objects' destructors are called.

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (78)

Exception Safety GuaranteesException Safety Guarantees

Level 3: Consistency.
All objects are left in a consistent state, not necessarily the state before f() was
entered, and not necessarily the state after normal termination. All operations
on the data have well-defined behavior. No crashes, no resource leaks, safe
access.

Level 4: Full commit-or-rollback.
All objects are left in the state they had before execution of f(). All data
values are restored to their previous values.

40

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (79)

Suppressing ExceptionsSuppressing Exceptions

A user of a function might want to suppress any exceptions
thrown by that function.

Give the user a way to avoid the exception.
– Supply a check function that can be used to make sure that an

exception cannot occur.

Allow disabling of exceptions.
– global mask (e.g. exception mask in iostreams)
– additional argument (e.g. new(nothrow()))
– additional function (e.g. at() and operator[]())

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (80)

ReferencesReferences

The C++ Programming Language, 3rd EditionThe C++ Programming Language, 3rd Edition
Bjarne Stroustrup
Addison Wesley Longman, 1997

More Effective C++More Effective C++
Scott Meyers
Addison Wesley Longman, 1996

41

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (81)

ReferencesReferences

Ten Rules for Handling Exception
Handling Sucessfully

Harald M. Müller, January 1996

Coping with Exceptions
Jack W. Reeves, March 1996

Exceptions and Standards
Jack W. Reeves, May 1996

Ten Guidelines for Exception
Specification

Jack W. Reeves, July 1996

Exceptions and Debugging
Jack W. Reeves,
November/December 1996

Making the World Safe for Exception
Matthew H. Austern, January 1998

The auto_ptr Class Template
Klaus Kreft & Angelika Langer,
November/December 1998

© Copyright 1995-2000 by Angelika Langer. All Rights Reserved.
http://www.AngelikaLanger.com
last update: 11/6/2005 ,13:27 (82)

AuthorAuthor

AngelikaAngelika LangerLanger
Training & Mentoring
Object-Oriented Software Development in C++ & Java
Email: info@AngelikaLanger.com
http: www.AngelikaLanger.com

