
SM

white paper
A N S I C+ +

Need Headline??

A B S T R AC T

During the past several years, the C++ programming language has undergone a long and winding standardization process,

the result of which is not only refinements and clarifications, but also a substantial number of new language features. Each

of the new features was added to the language because a real-world problem had been identified that otherwise couldn’t be

solved elegantly and reliably. By using these new features, software engineers can improve the quality of their source code.

Programs written in ANSI C++ can be more predictable, more readable, and more robust. An integral part of ANSI C++ is the

standard library with its rich set of prefabricated abstractions. Using the library, a programmer can easily solve problems

with a few C++ statements that in pre-standard C++ required deep thought and significantly more lines of code. The result is

a visible reduction of complexity in ANSI C++ programs, which in turn makes programmers more productive and effective.

In short, ANSI C++ increases productivity and quality, in addition to the classic benefits of a standardized language such as

portability and prevalence.

M OT I VAT I O N

Nowadays, hardly any C++ programmer can ignore ANSI C++. Modern compilers gradually manage to implement a

growing percentage of the standardized language. The standard library is widely available and in numerous shops it

has already replaced proprietary foundation libraries. Worldwide, engineers are exploring the new possibilities that the

language and standard library now facilitates. As a result, new programming techniques emerge, are published and discussed,

become common knowledge, and find their way into production code. As this trend continues, a thorough knowledge of

the ANSI C++ features will be required of every C++ programmer.

Here is a list of the major new features available under ANSI C++:

• TH E STA N DA RD LI BR A RY

The standard library provides a rich set of efficient building blocks such as strings, containers, algorithms, complex

numbers, streams, locales, and many more. There is neither a justification for reinventing the wheel again and implementing

yet another string or linked list class, nor is there any need to resort to vendor-specific collection classes.

vol ume 3

S u bje ct m a tt e r r e l a t i ve to A NS I C ++
F O R M OR E I N F O R MAT I O N O N

S T A N D A R D C++ S E N D E - M A IL T O

S TA N DA R D CX X @ D E V E LO P . C OM

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

2
Su bj ec t m att er re l a t i ve to A N S I C+ +

F O R M OR E IN F O R MAT I O N O N

S T AN D AR D C++ S E N D E- M A IL T O

STA N DA R D CX X @ D E V E LO P . C OM

• T E M P L AT ES

Class and function templates add another dimension of programming power to the C++ language. Computation of

constants, evaluation of expressions, and polymorphic dispatch of functions are all examples of tasks that — using templates —

can be solved at compile time rather than at run time. I will never forget the committee meeting where a colleague of mine

stepped into the plenary session with a program that did not even compile, but computed the prime numbers and emitted

them in successive error messages. The program was stupid, but demonstrated impressively the power of compile-time

computations. Even if you do not want to unleash this power, templates make life a lot easier. Whenever you find yourself

tempted to solve a problem by “copy and paste,” pause for a second and consider using a template instead. Let the compiler

do the work instead of doing the tedious job yourself.

• E XC EP T ION H AN D LIN G

In pre-standard C++, it was cumbersome to indicate failure of constructors. The common technique of error indication

via return codes does not work for functions such as constructors, destructors, or cast operators that do not have a return

code, or for yet another category of functions whose return code is used for purposes other than error indication. First, it

was kind of tedious to report errors from such functions and secondly, it was inevitable to put the burden of recognizing the

error onto the user’s shoulders. By and large, error handling in pre-standard C++ was unreliable and error-prone. The

language feature of exceptions solves this problem and provides a uniform means for error indication and error handling.

• N A M ES PAC ES

Name collisions happen more often than many engineers believe. Overloaded binary operators, for instance, must be

implemented as global friend functions in order to make them behave symmetrically. The stream inserters and extractors are

classical examples of such friend functions. If programmer A implements an inserter for objects of type X and programmer

B implements yet another version of the same inserter, then we have a name clash that cannot be avoided, because operators

have a name that we cannot change without losing the convenience of the operator notation. ANSI C++ introduced the

concept of namespace to address this (and other) problems.

• TH E N EW -ST YLE C A S TS

The classic C-style cast had a multitude of meanings and purposes. The new-style casts replace it completely and

document more clearly the intent of a cast. Additionally, they enable the compiler to perform certain checks. For instance,

in ANSI C++ we have a safe downcast that checks type information at run time.

• TH E E X P LIC I T K EY WO R D

Unsolicited type conversions can happen if we provide one-argument constructors. These “converting constructors”

are u sed by the compiler whenever it must set up a se q u e n ce of implicit type co nve rs i o n s. Often, the res u l ts are surprising.

To preve nt the compiler from silently using one-a rg u m e nt co n st r u c to rs from implicit co nve rs i o n s, the explicit key wo rd

was int ro d u ce d .

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

3
Su bj ec t m att er re l a t i ve to A N S I C+ +

F O R M OR E IN F O R MAT I O N O N

S T AN D AR D C++ S E N D E- M A IL T O

STA N DA R D CX X @ D E V E LO P . C OM

• TH E MU TAB L E K EY W O R D

Sometimes you have to cast away the constness of an object. In ANSI C++, some of these cases can be eliminated by

using the mutable keyword, which is for qualification of data members of a class, so that they can be modified from within

a const member function without having to cast away the constness of the this pointer.

Each of these features has a potential to increase your productivity and the quality of your programs. That being said,

we should still not forget that each of the new features adds to the complexity and power of an already complex and

powerful programming language. Some of them, in particular templates, exceptions, and the library, have a learning curve

of their own. There are gotchas and pitfalls and new challenges to master. For illustration, let us explore an example that

uses the standard library.

P R E - S TA N DA R D C + + VS . A N SI C+ +

In the following, we will discuss a simple program that reads lines from a file, sorts the lines, and writes the resulting

sorted list to an output file. Before the advent of ANSI C++, we had to do quite a bit of work to make that happen. Below is a

sample implementation of a read-sort-write program in classic C++. Don’t attempt to understand the source code; just make

a note of its size and complexity. In a minute, we will compare is to an ANSI C++ solution that is much more fun to look at.

So, here is a pre-standard C++ solution:

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>

void doIt(const char* in,const char* out)
{

/* allocate buffer with initial capacity */
size_t bufSiz =1024;
char** buf = (char**) malloc(sizeof(char*)*bufSiz);
if (buf == 0) quit();
size_t linCnt = 0;
buf[linCnt] = 0;

/* allocate line buffer as destination for read */
size_t linBufSiz = 256;
char* linBuf = (char*) malloc(sizeof(char)*linBufSiz);
if (linBuf == 0) quit();
linBuf[0] =’\0’;

/* open input file */
ifstream inFile(in);

/**/
/* read input */
while (!(inFile.getline(linBuf,linBufSiz)).eof() && !inFile.bad())
{/* while there is still input */

expandLinBuf(linBuf,linBufSiz,inFile);
storeTok(buf,linCnt,bufSiz,linBuf);

}

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

4
Su bj ec t m att er re l a t i ve to A N S I C+ +

F O R M OR E IN F O R MAT I O N O N

S T AN D AR D C++ S E N D E- M A IL T O

STA N DA R D CX X @ D E V E LO P . C OM

/* sort strings */
qsort(buf, linCnt ,sizeof(char*), (int(*)(const void*,const void*))strcmp);

/* open output file and write sorted strings to output file */
ofstream outFile(out);
for (size_t i = 0; i<linCnt;i++)

outFile<<buf[i]<<endl;
}

It needs a couple of helper functions, which are shown below:

static void quit()
{ cerr << “memory exhausted” << endl;

exit(1);
}

static void expandLinBuf(char*& linBuf, size_t& linBufSiz,ifstream& inFile)
{

while (!inFile.eof()&&!inFile.bad()&&strlen(linBuf)==linBufSiz-1)
{ /* while line does not fit into string buffer */

/* reallocate line buffer */
linBufSiz += linBufSiz;
linBuf = (char*) realloc(linBuf,sizeof(char)*linBufSiz);
if (linBuf == 0) quit();

/* read more into buffer */
inFile.getline(linBuf+linBufSiz/2-1,linBufSiz/2+1);

}
}

static void storeTok(char**& buf, size_t& linCnt, size_t& bufSiz, const char* token)
{

/* allocate memory for a copy of the token */
size_t tokLen =strlen(token);
buf[linCnt] = (char*) malloc(sizeof(char)*tokLen+1);
if (buf[linCnt] == 0) quit();

/* copy the token */
strncpy(buf[linCnt++],token,tokLen+1);

/* expand the buffer, if full */
if (linCnt == bufSiz)
{ bufSiz +=bufSiz;

buf = (char**) realloc(buf,sizeof(char*)*bufSiz);
if (buf == 0) quit();

}
}

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

5
Su bj ec t m att er re l a t i ve to A N S I C+ +

F O R M OR E IN F O R MAT I O N O N

S T AN D AR D C++ S E N D E- M A IL T O

STA N DA R D CX X @ D E V E LO P . C OM

Quite a bit of code, isn’t it? Basically, the program must provide and manage the memory for a line buffer into which the

characters extracted from the file are stored. Plus it manages the memory for an array that holds all lines for subsequent

invocation of the qsort() function. Both buffers must be of dynamic size, because neither the length nor the number of lines is

known in advance. Reallocations might be necessary, which complicates matters even further.

In ANSI C++ the read-sort-write program boils down to something as concise and elegant as this:

#include <fstream>
#include <string>
#include <set>
#include <algorithm>
using namespace ::std;

void doIt(const char* in,const char* out)
{
set<string> buf;
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.insert(linBuf);

ofstream outFile(out);
copy(buf.begin(),buf.end(),ostream_iterator<string>(outFile,”\n”));

}

Why is it such a piece of cake in ANSI C++ compared to the effort that it takes in classic C++? The answer lies in the use

of abstractions such as string and set. They take over all the memory management chores that we had to do manually in the

pre-standard version of the program. All the allocation and reallocation goo is handled by string and set; they manage their

memory themselves and we don’t have to care any longer. Plus, the set is an ordered collection of elements and we do not

even have to sort it explicitly. Error indication is also much simpler. Situations such as memory exhaustion need not be indi-

cated explicitly; instead the operator new, which is called somewhere in the innards of string and set, will raise a bad_alloc

exception that is automatically propagated to the caller of our doIt() function. We need not do anything for error indication.

E X P LO RI N G A B I T M O RE OF T HE STA N DA RD LI B R A RY

If life in ANSI C++ is so easy, let’s go and explore it a bit further. We often have to care about efficiency of our programs.

Is the ANSI C++ solution above really as efficient as the classic C++ solution? Well, not really. In the ANSI solution we used

a set container for storing the lines read from the input file whereas we used a plain C++ array of character C-style strings in

the classic C++ solution. The set container is organized as a binary tree, and for that reason additional data must be

maintained for linking the nodes together. Can we eliminate the resulting space overhead? Yes, we can. The standard library

has a dynamic array container, called vector, that is less space consuming than the binary tree based set abstraction. Let us

optimize the solution shown above and use vector<string> instead of set<string>. The vector’s insert member function has a

different signature. A set container is always ordered and therefore there is a “right” place for a new element that is inserted.

This is different in a vector, and the insert() function asks for location where it shall insert the new element. Initially, the

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

6
Su bj ec t m att er re l a t i ve to A N S I C+ +

F O R M OR E IN F O R MAT I O N O N

S T AN D AR D C++ S E N D E- M A IL T O

STA N DA R D CX X @ D E V E LO P . C OM

vector is empty and there are not many choices for a location where new elements shall be inserted: we can either insert at

the beginning or at the end, both being identical anyway. Say, we insert at the end. Then the re-implemented doIt() function

looks like this:

void d(Itconst char* in,const char* out)
{

vector<string> buf;
vector<string>::iterator insAt = buf.end();
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.insert(insAt,linBuf);

sort(buf.begin(),buf.end());

ofstream outFile(out);
copy(buf.begin(),buf.end(),ostream_iterator<string>(outFile,”\n”));

}

Looks good, doesn’t it? It compiles, but — too bad L— at run time it crashes. Why? What is wrong here?

We need to look under the hood of the vector container if we want to understand what is happening here. How is

vector organized and what precisely does the insert() function do? A vector internally is a contiguous memory space.

Insertion into a vector means that all elements after the point of insertion are moved to the back, in order make room for

the new element, and then the new element is added to the collection. A side effect is that all references to elements after

the point of insertion become invalid. Now, the insert() function inserts the new element before the specified location.

The point of insertion itself, in our example designated by the iterator insAt, becomes invalid as a side effect of the insertion.

Any subsequent access to the element referred to by insAt might lead to a crash. This explains why our innocent program

crashes after the first insertion of a line into the vector container.

There are several solutions to this problem. The insert() function returns an iterator to the newly inserted element and

we can use this new, valid position as the point of insertion for subsequent additions to the vector. It would look like this:

void d(Itconst char* in,const char* out)
{

vector<string> buf;
vector<string>::iterator insAt = buf.end();
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
insAt = buf.insert(insAt,linBuf);

sort(buf.begin(),buf.end());

ofstream outFile(out);
copy(buf.begin(),buf.end(),ostream_iterator<string>(outFile,”\n”));

}

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

7
Su bj ec t m att er re l a t i ve to A N S I C+ +

F O R M OR E IN F O R MAT I O N O N

S T AN D AR D C++ S E N D E- M A IL T O

STA N DA R D CX X @ D E V E LO P . C OM

More elegant and easier to comprehend is the use of the push_back() function instead of the insert() function. It inserts

elements at the end of a vector. Our example then looks like this:

void doIt(const char* in,const char* out)
{

vector<string> buf;
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.push_back(linBuf);

sort(buf.begin(),buf.end());

ofstream outFile(out);
copy(buf.begin(),buf.end(),ostream_iterator<string>(outFile,”\n”));

}

What do we conclude from the program crash that we inadvertently caused? To effectively use the standard library, and

all the other new language features, we need to thoroughly understand them. They come with subtle pitfalls that we need to

know, so that we can avoid them.

Before you get scared and think: “Well, the new stuff looks cool and will most likely save me lot of work, but it also lures

me into lots of booby traps—is it really worth it?”, let me tell you that we have barely touched on the possibilities that open

up for you by using the standard library. Just as an example: How are the lines ordered in the code snippet above? We didn’t

ca re, so what happens? Ba s i ca l l y, what happens is a s t r c m p () style co m pa r i son: the strings are ord e red by co m paring the ASC I I

codes of the contained characters. Where did we say so? Well, we did not. It is the default behavior of the sort() algorithm.

If no compare function, in ANSI C++ more generally called a comparitor, is provided to the sort() function, then it uses the

operator<() of the element type, which in our example is string. The ANSI string class has an operator<() defined and this

operator performs an ASCII compare. The sort() algorithm implicitly uses it as the sorting criteria in the example above.

Equipped with this knowledge, we can consider other sorting orders. Ordering by ASCII codes does not meet the require-

ments of dictionary-like sorting, where upper case letters appear next to their lower case equivalents. In ASCII the capital

letters precede all the lower case letters, so that capital ‘Z’ precedes lower case ‘a’. Can we provide a dictionary-type ordering

instead of the ASCII default? How about a case-sensitive ordering? How about culture-dependent sorting? Foreign alphabets

include interesting special characters. How do they affect the sorting order? Lots of questions

As an example, let us consider a culture-sensitive sorting order. The standard library includes predefined abstractions

for internationalization of programs. Among them is class locale, which provides culture-dependent string collation via its

overloaded function call operator. An object of a class type that has the function call operator overloaded is called a functor

in ANSI C++ and can be invoked like a function. In particular, we can pass it to the sort() algorithm as the sorting criteria.

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

8
Su bj ec t m att er re l a t i ve to A N S I C+ +

F O R M OR E IN F O R MAT I O N O N

S T AN D AR D C++ S E N D E- M A IL T O

STA N DA R D CX X @ D E V E LO P . C OM

Here is the respective code:

#include <fstream>
#include <string>
#include <vector>
#include <algorithm>
#include <locale>
using namespace ::std;

void doIt(const char* in,const char* out)
{

vector<string> buf;
string linBuf;
ifstream inFile(in);

while(getline(inFile,linBuf))
buf.push_back(linBuf); // works

sort(buf.begin(),buf.end(),locale(“German”));

ofstream outFile(out);
copy(buf.begin(),buf.end(),ostream_iterator<string>(outFile,”\n”));

}

The culture-dependent sorting order just serves as an example here. We can define any other sorting

criteria, as a function or as a functor, and plug it in with comparable ease. It works so nicely because

the sort() algorithm is a function template that has the type of the comparitor as a template argument.

This way you can use any type of comparitor for sorting. As you can see, the standard library makes

your programs significantly more flexible and easy to extend.

CO N C LU S I O N S

In all but the stodgiest of work environments, software engineers currently make the transition

from pre-standard C++ dialects and old-fashioned proprietary foundation libraries to ANSI C++ for two

important reasons: portability and productivity. Every engineer knows from personal, painful experience

how hard it is to write software that runs correctly and efficiently. So once a program works in one

environment, we don’t want to repeat the effort if we move to another (version of) compiler or processor

or operating system. Portability is what standards are for, and ANSI C++ supports it in two ways: by

eliminating language dialects and by providing a foundation library. In addition, it defines new language

features that are designed to help us in pulling off our daily programming tasks more efficiently and with

greater ease. If we intend to stay competitive, we cannot afford to ignore the new language standard.

Nevertheless, while ANSI C++ has the potential to increase productivity, software quality, and portability,

it also needs to be understood thoroughly if we want to get the most out of it.

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

9
Su bj ec t m att er re l a t i ve to A N S I C+ +

F O R M OR E IN F O R MAT I O N O N

S T AN D AR D C++ S E N D E- M A IL T O

STA N DA R D CX X @ D E V E LO P . C OM

ANSI C+ +: inside the new language

fea tu res reveals the new language

co n st r u c ts in depth, and makes clea r

w h e re and why you would wa nt to use

(or avoid) them in pra c t i ce. You will lea r n

h ow the ANSI C+ + sta n d a rd i zation has

ta ken C+ + b eyond its object- o r i e nte d

fea tu res to become a multi-pa ra d i g m

p ro g ramming language. Pra c t i cal

a p p l i cation of new C+ + fea tu res will be

d e m o n st ra ted through lab exe rc i ses including changes to te m p l a tes, which can now

be used for generic pro g ramming, compile-time co m p u ta t i o n s, static policy mix- i n s,

and much more. This co u rse shows you why exce ptions are now an inte g ral pa rt of the

l a n g u a g e, and why exce ption sa fety is an i ssue to d ay. You will also learn about STL

and the rich set of co nta i n e rs and algorithms it prov i d es. The co u rse has been designed

by Angelika Langer, who is a member of the ANSI C+ + Sta n d a rds Co m m i ttee and a

co l u m n i st for C+ + Re p o rt.

P R E R E Q U I S I T E S

You should have at least 1-2 years of C+ +

p ro g ramming and be comfortable with

the traditional object-oriented language

f e a t u res of C+ +, including classes and

inheritance. This course assumes you have

taken Essential C+ + or have equiva l e n t

k n owledge, and have been using C+ + i n

p ractice since.

C LA S S AN D FU N C TI ON T E M PL AT E S

T E M PL AT E S P E C I AL I Z ATI O N

M E M B E R TE M P LAT ES

T HRO WI NG A N D C ATC HI NG E XC EP TI O N S

E XC EP TI O N S I N C O NST RUC TO RS / D E ST RUC TO RS

AU TO P OI N TE R A N D STA N DA R D E XC EP TI O NS

E XC EP TI O N SP E C I F I CAT I O N S

RU N TIM E TY PE I NF OR MAT I O N

N E W- ST Y LE C A STS

N A M ES PA C ES

C O N TA I N E R S, I T ER ATO R S , A N D A LG OR I T H MS (ST L)

P RO G R AM MI N G WI TH F U N C T IO N O B J E C T T Y P E S

U S E R - D E F IN E D IT E R ATO RS AN D C O N TA I N ER S

ST RI N G S AN D C HA R AC TE R T R A I TS

ST RE AM I N P U T / O U T P U T

I N P U T / O U T P U T OF U S E R - D E F IN E D T Y P E S

essential ANSI C++
inside the new language fe a t u res

C O U R S E I N C LU D E S S T U DY- K I T,
P C FO R L A B E X E RC I S ES

5 DAYS

What is new in ANSI C++?

What can you do with templates apart from parameterizing types?

What is generic programming, why and how would you want to use it?

How can you get the most out of the Standard Library?

How can you use stream I/O effectively?

How can you catch and cope with exceptions?

F W 3 2 0

A n g e l i ka Langer

w w w.d eve l o p.co m

SM

white paper

10
Su bj ec t m att e r re l a t i ve to A N S I C+ +

F O R M OR E I N F O R MAT I O N O N

S TA N D A R D C++ S E N D E- M A IL T O

S TA N DA R D CX X @ D E V E LO P . C OM

21535 Hawthorne Blvd

Fourth Floor

To r rance, CA 90 5 0 3

(310) 543 1716

fax (310) 543 2136

w w w . d e v e l o p . c o m
S M

STU DE N T NA ME

CO M PAN Y NA M E

A D D R E SS

PH ON E NO.
M A I N L I N E

D I R E C T L I N E

FAX N O.

E-M AI L A DDR ESS

s t u d e n t i n f o r m a t i o n

CO N TACT N AME

CO M PAN Y NA M E

BI LL IN G A DD RESS

PH ON E NO.
M A I N L I N E

D I R E C T L I N E

FAX N O.

E-M AI L A DDR ESS

b i l l i n g i n f o r m a t i o n

N U M B E R C O U R S E D E S C R I PT I O N D A T E F E E L O C A T I O N

P L E AS E M A I L

O R FA X T H I S

R EG I ST RAT I O N

F O R M T O :

re g i s t ra t i o n

T h e re is no cancellation fee if notification is re c e i ved 15 days prior to the
first day of instruction. Cancellation notices of 14 days or less are subject
to 50% cancellation fee, applicable to the same course if re s c h e d u l e d .
Cancellations occurring without notice are responsible for the full tuition.
D e velopMentor re s e rves the right to cancel a course if necessary, and in
that event, all deposits will be promptly refunded or a new course date
will be scheduled. Course content, prices, and availability are subject to
change without prior notice.

Company purchase orders are also accepted per prior arrangement.
Payment in full is required upon receipt of invoice. Two weeks prior to first
day of instruction, only paid reservations can be held as confirmed.
For additional information, email info@deve l o p. c o m

to register by phone, call

800-699-1932
from within the UK, call

08000-562-265
from within Europe, call

+44 1242 525 108

M ET H OD OF PAY M E N T C H EC K P U RC H ASE O RDE R C RE DI T CA R D

P U RC H ASE ORD E R NO.

CA RD NO. E XP DAT E

CA RD TY PE V I S A M AST E RCA R D A M E R I C AN EX PR ESS

S I G N AT U R E

SM

F W 320 A NS I C ++

